Multiple ChoiceLeroy is standing 900 mfrom firecracker A and 600 mfrom firecracker B. After exploding, the light from both firecrackers arrives at Leroy at the same time. In Leroy's frame of reference, which firecracker exploded first, or were they simultaneous?
Open QuestionA horizontal beam of laser light of wavelength 585 nm passes through a narrow slit that has width 0.0620 mm. The intensity of the light is measured on a vertical screen that is 2.00 m from the slit. (a) What is the minimum uncertainty in the vertical component of the momentum of each photon in the beam after the photon has passed through the slit? (b) Use the result of part (a) to estimate the width of the central diffraction maximum that is observed on the screen.
Open QuestionAn ultrashort pulse has a duration of 9.00 fs and produces light at a wavelength of 556 nm. What are the momentum and momentum uncertainty of a single photon in the pulse?
Open QuestionA beam of alpha particles is incident on a target of lead. A particular alpha particle comes in 'head-on' to a particular lead nucleus and stops 6.50x10^-14 m away from the center of the nucleus. (This point is well outside the nucleus.) Assume that the lead nucleus, which has 82 protons, remains at rest. The mass of the alpha particle is 6.64x10^-27 kg. (a) Calculate the electrostatic potential energy at the instant that the alpha particle stops. Express your result in joules and in MeV. (b) What initial kinetic energy (in joules and in MeV) did the alpha particle have? (c) What was the initial speed of the alpha particle?
Open QuestionA 4.78-MeV alpha particle from a 226Ra decay makes a head-on collision with a uranium nucleus. A uranium nucleus has 92 protons. (a) What is the distance of closest approach of the alpha particle to the center of the nucleus? Assume that the uranium nucleus remains at rest and that the distance of closest approach is much greater than the radius of the uranium nucleus. (b) What is the force on the alpha particle at the instant when it is at the distance of closest approach?
Open QuestionThrough what potential difference must electrons be accelerated if they are to have (a) the same wavelength as an x ray of wavelength 0.220 nm and (b) the same energy as the x ray in part (a)?
Open QuestionCalculate the de Broglie wavelength of a 5.00-g bullet that is moving at 340 m/s. Will the bullet exhibit wavelike properties?
Open QuestionAn electron is moving with a speed of 8.00 * 10^6 m/s. What is the speed of a proton that has the same de Broglie wavelength as this electron?
Open QuestionAn alpha particle (m = 6.64x10^-27 kg) emitted in the radioactive decay of uranium-238 has an energy of 4.20 MeV. What is its de Broglie wavelength?
Open QuestionAn electron has a de Broglie wavelength of 2.80x10^-10 m. Determine (a) the magnitude of its momentum and (b) its kinetic energy (in joules and in electron volts).
Open QuestionFor crystal diffraction experiments (discussed in Section 39.1), wavelengths on the order of 0.20 nm are often appropriate. Find the energy in electron volts for a particle with this wavelength if the particle is (a) a photon.
Open Question(a) An electron moves with a speed of 4.70x10^6 m/s. What is its de Broglie wavelength? (b) A proton moves with the same speed. Determine its de Broglie wavelength.
Open Question(a) The x-coordinate of an electron is measured with an uncertainty of 0.30 mm. What is the x-component of the electron's velocity, vx , if the minimum percent uncertainty in a simultaneous measurement of vx is 1.0%? (b) Repeat part (a) for a proton.
Open QuestionA scientist has devised a new method of isolating individual particles. He claims that this method enables him to detect simultaneously the position of a particle along an axis with a standard deviation of 0.12 nm and its momentum component along this axis with a standard deviation of 3.0x10^-25 kg-m/s. Use the Heisenberg uncertainty principle to evaluate the validity of this claim.