5. Projectile Motion
Positive (Upward) Launch
- Open QuestionIn a carnival booth, you can win a stuffed giraffe if you toss a quarter into a small dish. The dish is on a shelf above the point where the quarter leaves your hand and is a horizontal distance of 2.1 m from this point (Fig. E3.19). If you toss the coin with a velocity of 6.4 m/s at an angle of 60° above the horizontal, the coin will land in the dish. Ignore air resistance. (a) What is the height of the shelf above the point where the quarter leaves your hand?
- Open QuestionA shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0° above the horizontal. The shot hits the ground 2.08 s later. Ignore air resistance. (c) How far did she throw the shot horizontally?
- Open QuestionA shot putter releases the shot some distance above the level ground with a velocity of 12.0 m/s, 51.0° above the horizontal. The shot hits the ground 2.08 s later. Ignore air resistance. (b) What are the components of the shot's velocity at the beginning and at the end of its trajectory?
- Open QuestionA rookie quarterback throws a football with an initial upward velocity component of 12.0 m/s and a horizontal velocity component of 20.0 m/s. Ignore air resistance. (a) How much time is required for the football to reach the highest point of the trajectory?
- Open Question
(II) You buy a plastic dart gun, and being a clever physics student you decide to do a quick calculation to find its maximum horizontal range. You shoot the gun straight up, and it takes 3.4 s for the dart to land back at the barrel. What is the maximum horizontal range of your gun?
- Open Question
Apollo astronauts took a 'nine iron' to the Moon and hit a golf ball about 180 m. Assuming that the swing, launch angle, and so on, were the same as on Earth where the same astronaut could hit it only 32 m, estimate the acceleration due to gravity on the surface of the Moon. (We neglect air resistance in both cases, but on the Moon there is none.)
- Open QuestionA ball is thrown toward a cliff of height h with a speed of 30 m/s and an angle of 60° above horizontal. It lands on the edge of the cliff 4.0 s later.c. What is the ball's impact speed?
- Open QuestionA ball is thrown toward a cliff of height h with a speed of 30 m/s and an angle of 60° above horizontal. It lands on the edge of the cliff 4.0 s later.b. What was the maximum height of the ball?
- Open QuestionA physics student on Planet Exidor throws a ball, and it follows the parabolic trajectory shown in FIGURE EX4.13. The ball's position is shown at 1 s intervals until t = 3s. At t = 1s, the ball's velocity is v = (2.0 i + 2.0 j) m/s. (b) What is the value of g on Planet Exidor?
- Open QuestionA physics student on Planet Exidor throws a ball, and it follows the parabolic trajectory shown in FIGURE EX4.13. The ball's position is shown at 1 s intervals until t = 3s. At t = 1s, the ball's velocity is v = (2.0 i + 2.0 j) m/s. (a) Determine the ball's velocity at t = 0 s, 2s, and 3s.
- Open QuestionIn the absence of air resistance, a projectile that lands at the elevation from which it was launched achieves maximum range when launched at a 45° angle. Suppose a projectile of mass m is launched with speed into a headwind that exerts a constant, horizontal retarding force Fwᵢₙd = -Fwᵢₙd î. a. Find an expression for the angle at which the range is maximum.
- Open QuestionIn the absence of air resistance, a projectile that lands at the elevation from which it was launched achieves maximum range when launched at a 45° angle. Suppose a projectile of mass m is launched with speed into a headwind that exerts a constant, horizontal retarding force Fwᵢₙd = -Fwᵢₙd î. b. By what percentage is the maximum range of a 0.50 kg ball reduced if Fwᵢₙd = 0.60 N?
- Open Question
A child runs down a 12° hill and then suddenly jumps upward at a 15° angle above horizontal and lands 1.3 m down the hill as measured along the hill. What was the child's initial speed at the jump?
- Open Question
(II) An Olympic long jumper is capable of jumping 8.0 m. Assuming his horizontal speed is 9.1 m/s as he leaves the ground, how long is he in the air and how high does he go? Assume that he lands standing upright—that is, the same way he left the ground.
- Open Question
A grasshopper hops along a level road. On each hop, the grasshopper launches itself at angle θ₀ = 45 ° and achieves a range R = 0.80 m . What is the average horizontal speed of the grasshopper as it hops along the road? Assume that the time spent on the ground between hops is negligible.