A mass-spring system with an angular frequency ω = 8π rad/s oscillates back and forth. (a) Assuming it starts from rest, how much time passes before the mass has a speed of 0 again? (b) How many full cycles does the system complete in 60s?
17. Periodic Motion
Intro to Simple Harmonic Motion (Horizontal Springs)
- Multiple Choice
- Multiple Choice
A 4-kg mass on a spring is released 5 m away from equilibrium position and takes 1.5 s to reach its equilibrium position. (a) Find the spring's force constant. (b) Find the object's max speed.
- Multiple Choice
What is the equation for the position of a mass moving on the end of a spring which is stretched 8.8cm from equilibrium and then released from rest, and whose period is 0.66s? What will be the object's position after 1.4s?
- Multiple ChoiceAn air-track glider attached to a spring oscillates between the 50 cm mark and the 62 cm mark. It completes seven oscillations in 10 s. What is the maximum speed of the glider as it oscillates?
- Multiple ChoiceA certain astronaut oscillates back and forth on a chair attached to springs. The spring constants are such that when her mass is known to be she oscillates with a period of After some time in space, a repetition of the measurement yields a period of What is the astronaut's mass now?
- Multiple ChoiceA 250 g air-track glider attached to a spring oscillates with maximum speed of . If the spring has a spring constant of , at what distance from the equilibrium position will the glider have a speed of ?
- Open Question
Carbon dioxide is a linear molecule. The carbon–oxygen bonds in this molecule act very much like springs. Figure 14–45 shows one possible way the oxygen atoms in this molecule can oscillate: the oxygen atoms oscillate symmetrically in and out, while the central carbon atom remains at rest. Hence each oxygen atom acts like a simple harmonic oscillator with a mass equal to the mass of an oxygen atom. It is observed that this oscillation occurs with a frequency of ƒ = 2.83 x 10¹³ Hz. What is the spring constant of the C O bond?
<IMAGE>
- Open QuestionA small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the amplitude of the motion is 0.090 m, it takes the block 2.70 s to travel from x = 0.090 m to x = -0.090 m. If the amplitude is doubled, to 0.180 m, how long does it take the block to travel (b) from x = 0.090 m to x = -0.090 m?
- Open QuestionAn object is undergoing SHM with period 0.900 s and amplitude 0.320 m. At t = 0 the object is at x = 0.320 m and is instantaneously at rest. Calculate the time it takes the object to go (a) from x = 0.320 m to x = 0.160 m. (b) from x = 0.160 m to x = 0.
- Open Question(a) Music. When a person sings, his or her vocal cords vibrate in a repetitive pattern that has the same frequency as the note that is sung. If someone sings the note B flat, which has a frequency of 466 Hz, how much time does it take the person's vocal cords to vibrate through one complete cycle, and what is the angular frequency of the cords?
- Open QuestionA 0.500-kg mass on a spring has velocity as a function of time given by vx(t) = -(3.60 cm/s) sin[(4.71 rad/s)t - (pi/2)]. What are (a) the period; (b) the amplitude; (c) the maximum acceleration of the mass; (d) the force constant of the spring?
- Open QuestionA 0.500-kg mass on a spring has velocity as a function of time given by vx(t) = -(3.60 cm/s) sin[(4.71 rad/s)t - (pi/2)]. What are (a) the period; (b) the amplitude; (c) the maximum acceleration of the mass; (d) the force constant of the spring?
- Open QuestionA 0.400-kg object undergoing SHM has ax = -1.80 m/s^2 when x = 0.300 m. What is the time for one oscillation?
- Open QuestionWeighing Astronauts. This procedure has been used to 'weigh' astronauts in space: A 42.5-kg chair is attached to a spring and allowed to oscillate. When it is empty, the chair takes 1.30 s to make one complete vibration. But with an astronaut sitting in it, with her feet off the floor, the chair takes 2.54 s for one cycle. What is the mass of the astronaut?
- Open QuestionA small block is attached to an ideal spring and is moving in SHM on a horizontal, frictionless surface. When the amplitude of the motion is 0.090 m, it takes the block 2.70 s to travel from x = 0.090 m to x = -0.090 m. If the amplitude is doubled, to 0.180 m, how long does it take the block to travel (a) from x = 0.180 m to x = -0.180 m?