Multiple ChoiceA cube has sides equal to 4.0cm. The net flux through the cube is 12N·m2/C outward. Is the net charge in the cube positive, negative or zero?
Multiple ChoiceAn electric field with strength 3500N/C exists just outside a face of a large block of aluminum. If the electric field points towards the block, what is the surface charge density on the face of the block?
Multiple ChoiceA sphere of radius 4.0cm has a charge of 23nC evenly distributed throughout the sphere. What is the electric field strength 1.0cm from the center of the sphere?
Multiple ChoiceAn insulating sphere of radius 4.0cm is in the center of a conducting spherical shell with inner radius of 5.0cm and outer radius of 7.0cm. The insulating sphere has a charge of −34nC and the conducting spherical shell has a net charge of 42nC. What is the total charge on the inner surface of the conducting spherical shell?
Multiple ChoiceA very long insulating cylinder has radius 4.7cm. Every 3.0m length of the cylinder contains a charge of 86nC evenly distributed throughout. What is the strength of the electric field 3.0cm from the axis of the cylinder?
Open QuestionA charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 12.0 cm, giving it a charge of −49.0 μ C. Find the electric field (b) just outside the paint layer;
Open QuestionA charged paint is spread in a very thin uniform layer over the surface of a plastic sphere of diameter 12.0 cm, giving it a charge of −49.0 μ C. Find the electric field (a) just inside the paint layer;
Open QuestionThe nuclei of large atoms, such as uranium, with 92 protons, can be modeled as spherically symmetric spheres of charge. The radius of the uranium nucleus is approximately 7.4×10−15 m. (c) The electrons can be modeled as forming a uniform shell of negative charge. What net electric field do they produce at the location of the nucleus?
Open QuestionThe nuclei of large atoms, such as uranium, with 92 protons, can be modeled as spherically symmetric spheres of charge. The radius of the uranium nucleus is approximately 7.4×10−15 m. (b) What magnitude of electric field does it produce at the distance of the electrons, which is about 1.0×10−10 m?
Open QuestionThe nuclei of large atoms, such as uranium, with 92 protons, can be modeled as spherically symmetric spheres of charge. The radius of the uranium nucleus is approximately 7.4×10−15 m. (a) What is the electric field this nucleus produces just outside its surface?
Open QuestionSome planetary scientists have suggested that the planet Mars has an electric field somewhat similar to that of the earth, producing a net electric flux of −3.63×1016 N·m2/C at the planet's surface. Calculate:(c) the charge density on Mars, assuming all the charge is uniformly distributed over the planet's surface.
Open QuestionSome planetary scientists have suggested that the planet Mars has an electric field somewhat similar to that of the earth, producing a net electric flux of −3.63×1016 N·m2/C at the planet's surface. Calculate: (b) the electric field at the planet's surface (refer to the astronomical data inside the back cover);
Open QuestionSome planetary scientists have suggested that the planet Mars has an electric field somewhat similar to that of the earth, producing a net electric flux of −3.63×1016 N·m2/C at the planet's surface. Calculate: (a) the total electric charge on the planet;
Open QuestionA hollow, conducting sphere with an outer radius of 0.250 m and an inner radius of 0.200 m has a uniform surface charge density of +6.37×10−6 C/m2. A charge of −0.500 μC is now introduced at the center of the cavity inside the sphere. (c) What is the electric flux through a spherical surface just inside the inner surface of the sphere?
Open QuestionA hollow, conducting sphere with an outer radius of 0.250 m and an inner radius of 0.200 m has a uniform surface charge density of +6.37×10−6 C/m2. A charge of −0.500 μC is now introduced at the center of the cavity inside the sphere. (b) Calculate the strength of the electric field just outside the sphere?