Which of the following describes an acrocentric chromosome?
2. Mendel's Laws of Inheritance
Inheritance in Diploids and Haploids
- Multiple Choice
- Multiple Choice
In diploid organisms there are _______ chromosomal copies. In haploid organisms there is _______ chromosomal copy.
- Multiple Choice
After a diploid cell undergoes meiosis, it divides to produce…
- Open Question
Answer the following questions for autosomal conditions such as PKU.
If the first child of parents who are both heterozygous carriers of a recessive mutant allele is homozygous recessive, what is the chance the second child of the couple will be homozygous recessive? What is the chance the second child will be a heterozygous carrier of the recessive mutation?2views - Open Question
Answer the following questions for autosomal conditions such as PKU.
Parents who are each heterozygous carriers for a recessive mutant allele have a child who does not have the condition. What is the chance this child is a heterozygous carrier of the condition?2views - Open Question
Answer the following questions for autosomal conditions such as PKU.
If both parents are heterozygous carriers of a mutant allele, what is the chance that their first child will be homozygous recessive for the mutation?2views - Open Question
Homocystinuria is a rare autosomal recessive condition on the RUSP list of conditions screened by newborn genetic testing. The condition results from a mutation that blocks the degradation of the amino acid methionine. The absence of a critical enzyme causes the buildup of the compound homocysteine, which is one of the intermediate compounds in the methionine breakdown pathway. Homocystinuria causes mental impairment, heart problems, seizures, eye abnormalities, and a number of other symptoms that shorten life if not treated. The condition is treated by a specialized diet that is low in methionine and by the ingestion of several supplements.
The low-methionine diet must be maintained throughout life to manage homocystinuria. Why do you think this is the case?2views - Open Question
Homocystinuria is a rare autosomal recessive condition on the RUSP list of conditions screened by newborn genetic testing. The condition results from a mutation that blocks the degradation of the amino acid methionine. The absence of a critical enzyme causes the buildup of the compound homocysteine, which is one of the intermediate compounds in the methionine breakdown pathway. Homocystinuria causes mental impairment, heart problems, seizures, eye abnormalities, and a number of other symptoms that shorten life if not treated. The condition is treated by a specialized diet that is low in methionine and by the ingestion of several supplements.
Why do you think eating a low-methionine diet is critical to controlling homocystinuria?2views - Open Question
The diploid number of the hypothetical animal Geneticus introductus is 2n = 36. Each diploid nucleus contains 3 ng of DNA in G₁.
Complete the following table by entering the number of chromosomes and amount of DNA present per cell at the end of each stage listed.
End of Cell Cycle Number of Amount of
Stage Chromosomes DNA _
Telophase I
Mitotic telophase
Telophase II2views - Open Question
In diploid yeast strains, sporulation and subsequent meiosis can produce haploid ascospores, which may fuse to reestablish diploid cells. When ascospores from a segregational petite strain fuse with those of a normal wild-type strain, the diploid zygotes are all normal. Following meiosis, ascospores are petite and normal. Is the segregational petite phenotype inherited as a dominant or a recessive trait?
2views - Open Question
A couple and some of their relatives are screened for Gaucher disease in a community-based screening program. The woman is homozygous for the dominant allele, represented by G. The woman's father, sister, and paternal grandmother are heterozygous carriers of the mutant allele, represented by g. Her paternal grandfather, her mother, and both of her mother's parents are homozygous for the dominant allele. The man is heterozygous and he has a brother with Gaucher disease. The man's parents and grandparents have not been tested, but it is known that none of them has Gaucher disease.
Explain why you are able to assign genotypes to the man's parents despite their not being tested.2views - Open Question
A couple and some of their relatives are screened for Gaucher disease in a community-based screening program. The woman is homozygous for the dominant allele, represented by G. The woman's father, sister, and paternal grandmother are heterozygous carriers of the mutant allele, represented by g. Her paternal grandfather, her mother, and both of her mother's parents are homozygous for the dominant allele. The man is heterozygous and he has a brother with Gaucher disease. The man's parents and grandparents have not been tested, but it is known that none of them has Gaucher disease.
On the pedigree, write the genotypes (GG, Gg, or gg) for each person who has been tested or for whom you can deduce a genotype. If a genotype cannot be determined completely, list the alleles you know or deduce must be present.2views - Open Question
A couple and some of their relatives are screened for Gaucher disease in a community-based screening program. The woman is homozygous for the dominant allele, represented by G. The woman's father, sister, and paternal grandmother are heterozygous carriers of the mutant allele, represented by g. Her paternal grandfather, her mother, and both of her mother's parents are homozygous for the dominant allele. The man is heterozygous and he has a brother with Gaucher disease. The man's parents and grandparents have not been tested, but it is known that none of them has Gaucher disease.
Draw a pedigree of this family, including the woman, the man, their siblings, parents, and grandparents.2views - Open Question
If a man and a woman are each heterozygous carriers of a mutation causing a disease on the RUSP list, what do you think are the three or four most important factors they should consider in their decision making about having children?
2views - Open Question
Suppose a man and a woman are each heterozygous carriers of a mutation causing a fatal hereditary disease not on the RUSP list. Prenatal genetic testing can identify the genotype of a fetus with regard to this disease and can identify fetuses with the disease. What do you think are the three or four most important factors this couple should consider in their decision making about having children?
2views