How and why are eukaryotic mRNAs transported and localized to discrete regions of the cell?
13. Gene Regulation in Eukaryotes
Overview of Eukaryotic Gene Regulation
- Open Question
- Open Question
A muscle enzyme called ME1 is produced by transcription and translation of the ME1 gene in several muscles during mouse development, including heart muscle, in a highly regulated manner. Production of ME1 appears to be turned on and turned off at different times during development. To test the possible role of enhancers and silencers in ME1 transcription, a biologist creates a recombinant genetic system that fuses the ME1 promoter, along with DNA that is upstream of the promoter, to the bacterial lacZ (β-galactosidase) gene. The lacZ gene is chosen for the ease and simplicity of assaying production of the encoded enzyme. The diagram shows bars that indicate the extent of six deletions the biologist makes to the ME1 promoter and upstream sequences. The blue deletion labeled D is within the promoter whereas the gray bars span potential enhancer/silencer modules. The table displays the percentage of β-galactosidase activity in each deletion mutant in comparison with the recombinant gene system without any deletions.
Given the information available from deletion analysis, can you give a molecular explanation for the observation that ME1 expression appears to turn on and turn off at various times during normal mouse development?
- Open Question
A muscle enzyme called ME1 is produced by transcription and translation of the ME1 gene in several muscles during mouse development, including heart muscle, in a highly regulated manner. Production of ME1 appears to be turned on and turned off at different times during development. To test the possible role of enhancers and silencers in ME1 transcription, a biologist creates a recombinant genetic system that fuses the ME1 promoter, along with DNA that is upstream of the promoter, to the bacterial lacZ (β-galactosidase) gene. The lacZ gene is chosen for the ease and simplicity of assaying production of the encoded enzyme. The diagram shows bars that indicate the extent of six deletions the biologist makes to the ME1 promoter and upstream sequences. The blue deletion labeled D is within the promoter whereas the gray bars span potential enhancer/silencer modules. The table displays the percentage of β-galactosidase activity in each deletion mutant in comparison with the recombinant gene system without any deletions.
Why does deletion D effectively eliminate transcription of lacZ?
- Open Question
A muscle enzyme called ME1 is produced by transcription and translation of the ME1 gene in several muscles during mouse development, including heart muscle, in a highly regulated manner. Production of ME1 appears to be turned on and turned off at different times during development. To test the possible role of enhancers and silencers in ME1 transcription, a biologist creates a recombinant genetic system that fuses the ME1 promoter, along with DNA that is upstream of the promoter, to the bacterial lacZ (β-galactosidase) gene. The lacZ gene is chosen for the ease and simplicity of assaying production of the encoded enzyme. The diagram shows bars that indicate the extent of six deletions the biologist makes to the ME1 promoter and upstream sequences. The blue deletion labeled D is within the promoter whereas the gray bars span potential enhancer/silencer modules. The table displays the percentage of β-galactosidase activity in each deletion mutant in comparison with the recombinant gene system without any deletions.
Does this information indicate the presence of enhancer and/or silencer sequences in the ME1 upstream sequence? If so, where is/are the sequences located?
- Open Question
How is it possible that a given mRNA in a cell is found throughout the cytoplasm but the protein that it encodes is only found in a few specific regions?
- Open QuestionUsing the components in the accompanying diagram, design regulatory modules (i.e., enhancer/silencer modules) required for 'your' gene to be expressed only in differentiating (early) and differentiated (late) liver cells. Answer the three questions presented below by describing the roles that activators, enhancers, repressors, silencers, pioneer factors, insulators, chromatin remodeling complexes, and chromatin readers, writers, and erasers will play in the regulation of expression of your gene, that is, what factors will bind and be active in each case? Specify which transcription factors need to be pioneer factors.How will expression be prevented in other cell types?
- Open QuestionUsing the components in the accompanying diagram, design regulatory modules (i.e., enhancer/silencer modules) required for 'your' gene to be expressed only in differentiating (early) and differentiated (late) liver cells. Answer the three questions presented below by describing the roles that activators, enhancers, repressors, silencers, pioneer factors, insulators, chromatin remodeling complexes, and chromatin readers, writers, and erasers will play in the regulation of expression of your gene, that is, what factors will bind and be active in each case? Specify which transcription factors need to be pioneer factors.How will its expression be maintained?
- Open QuestionUsing the components in the accompanying diagram, design regulatory modules (i.e., enhancer/silencer modules) required for 'your' gene to be expressed only in differentiating (early) and differentiated (late) liver cells. Answer the three questions presented below by describing the roles that activators, enhancers, repressors, silencers, pioneer factors, insulators, chromatin remodeling complexes, and chromatin readers, writers, and erasers will play in the regulation of expression of your gene, that is, what factors will bind and be active in each case? Specify which transcription factors need to be pioneer factors.How will the gene be activated in the proper cell type?
- Open QuestionThe majority of this chapter focused on gene regulation at the transcriptional level, but the quantity of functional protein product in a cell can be regulated in many other ways as well (see Figure 13.1). Discuss possible reasons why transcriptional regulation or posttranscriptional regulation may have evolved for different types of genes.
- Open Question
What role do ubiquitin ligases play in the regulation of gene expression?
- Open Question
Much of what we know about gene interactions in development has been learned using nematodes, yeast, flies, and bacteria. This is due, in part, to the relative ease of genetic manipulation of these well-characterized genomes. However, of great interest are gene interactions involving complex diseases in humans. Wang and White [(2011). Nature Methods 8(4):341–346] describe work using RNAi to examine the interactive proteome in mammalian cells. They mention that knockdown inefficiencies and off-target effects of introduced RNAi species are areas that need particular improvement if the methodology is to be fruitful.
Comment on how 'knockdown inefficiencies' and 'off-target effects' would influence the interpretation of results. - Open Question
Much of what we know about gene interactions in development has been learned using nematodes, yeast, flies, and bacteria. This is due, in part, to the relative ease of genetic manipulation of these well-characterized genomes. However, of great interest are gene interactions involving complex diseases in humans. Wang and White [(2011). Nature Methods 8(4):341–346] describe work using RNAi to examine the interactive proteome in mammalian cells. They mention that knockdown inefficiencies and off-target effects of introduced RNAi species are areas that need particular improvement if the methodology is to be fruitful.
How might one use RNAi to study developmental pathways? - Open Question
In this chapter, we discussed several specific cis-elements in mRNAs that regulate splicing, stability, decay, localization, and translation. However, it is likely that many other uncharacterized cis-elements exist. One way in which they may be characterized is through the use of a reporter gene such as the gene encoding the green fluorescent protein (GFP) from jellyfish. GFP emits green fluorescence when excited by blue light. Explain how one might be able to devise an assay to test for the effect of various cis-elements on posttranscriptional gene regulation using cells that transcribe a GFP mRNA with genetically inserted cis-elements.
- Open Question
Incorrectly spliced RNAs often lead to human pathologies. Scientists have examined cancer cells for splice-specific changes and found that many of the changes disrupt tumor-suppressor gene function [Xu and Lee (2003). Nucl. Acids Res. 31:5635–5643]. In general, what would be the effects of splicing changes on these RNAs and the function of tumor-suppressor gene function? How might loss of splicing specificity be associated with cancer?
- Open Question
Mutations in the low-density lipoprotein receptor (LDLR) gene are a primary cause of familial hypercholesterolemia. One such mutation is a SNP in exon 12 of the LDLR. In premenopausal women, but not in men or postmenopausal women, this SNP leads to skipping of exon 12 and production of a truncated nonfunctional protein. It is hypothesized that this SNP compromises a splice enhancer [Zhu et al. (2007). Hum Mol Genet. 16:1765–1772]. What are some possible ways in which this SNP can lead to this defect, but only in premenopausal women?