19. Cancer Genetics
Cancer Mutations
- Open QuestionGo to the website http://www.cancer.gov and select 'Cancer Types' on the top menu bar. Scroll down to 'Breast Cancer' and click. Select 'Cases & Prevention' from the options. Click 'More information' and select 'BRCA Mutations: Cancer Risk and Genetic Testing'. Use the information on this page to answer the following questions.What are the approximate percentage increases in risk of having breast cancer and of having ovarian cancer for women inheriting harmful mutations of BRCA1 and BRCA2 compared with the risks in the general population?
- Open QuestionGo to the website http://www.cancer.gov and select 'Cancer Types' on the top menu bar. Scroll down to 'Breast Cancer' and click. Select 'Cases & Prevention' from the options. Click 'More information' and select 'BRCA Mutations: Cancer Risk and Genetic Testing'. Use the information on this page to answer the following questions.What features of family history increase the likelihood that a woman will have a harmful mutation of BRCA1 or BRCA2?
- Open Question
Describe the steps by which the TP53 gene responds to DNA damage and/or cellular stress to promote cell-cycle arrest and apoptosis. Given that TP53 is a recessive gene and is not located on the X chromosome, why would people who inherit just one mutant copy of a recessive tumor-suppressor gene be at higher risk of developing cancer than those without the recessive gene?
- Open Question
Part of the Ras protein is associated with the plasma membrane, and part extends into the cytoplasm. How does the Ras protein transmit a signal from outside the cell into the cytoplasm? What happens in cases where the ras gene is mutated?
- Open Question
Distinguish between oncogenes and proto-oncogenes. In what ways can proto-oncogenes be converted to oncogenes?
- Open Question
Of the two classes of genes associated with cancer, tumor-suppressor genes and oncogenes, mutations in which group can be considered gain-of-function mutations? In which group are the loss-of-function mutations? Explain.
- Open Question
Explain why many oncogenic viruses contain genes whose products interact with tumor-suppressor proteins.
- Open Question
Cancer can be defined as an abnormal proliferation of cells that defy the normal regulatory controls observed by normal cells. Recently, histone deacetylation therapies have been attempted in the treatment of certain cancers [reviewed by Delcuve et al. (2009)]. Specifically, the FDA has approved histone deacetylation (HDAC) inhibitors for the treatment of cutaneous T-cell lymphoma. Explain why histone acetylation might be associated with cancer and what the rationale is for the use of HDAC inhibitors in the treatment of certain forms of cancer.
- Open Question
Genetic tests that detect mutations in the BRCA1 and BRCA2 tumor-suppressor genes are widely available. These tests reveal a number of mutations in these genes—mutations that have been linked to familial breast cancer. Assume that a young woman in a suspected breast cancer family takes the BRCA1 and BRCA2 genetic tests and receives negative results. That is, she does not test positive for the mutant alleles of BRCA1 or BRCA2. Can she consider herself free of risk for breast cancer?
- Open Question
Mutations in tumor-suppressor genes are associated with many types of cancers. In addition, epigenetic changes (such as DNA methylation) of tumor-suppressor genes are also associated with tumorigenesis [Otani et al. (2013). Expert Rev Mol Diagn 13:445–455].
How might hypermethylation of the TP53 gene promoter influence tumorigenesis? - Open Question
Mutations in tumor-suppressor genes are associated with many types of cancers. In addition, epigenetic changes (such as DNA methylation) of tumor-suppressor genes are also associated with tumorigenesis [Otani et al. (2013). Expert Rev Mol Diagn 13:445–455].
Knowing that tumors release free DNA into certain surrounding body fluids through necrosis and apoptosis Kloten et al. [(2013). Breast Cancer Res. 15(1):R4] outline an experimental protocol for using human blood as a biomarker for cancer and as a method for monitoring the progression of cancer in an individual. - Open Question
A study by Bose and colleagues [(1998). Blood 92:3362–3367] and a previous study by Biernaux and others [(1996). Bone Marrow Transplant 17:(Suppl. 3) S45–S47] showed that BCR-ABL fusion gene transcripts can be detected in 25 to 30 percent of healthy adults who do not develop chronic myelogenous leukemia (CML). Explain how these individuals can carry a fusion gene that is transcriptionally active and yet do not develop CML.
- Open Question
What evidence indicates that mutations in human DNA mismatch repair genes are related to certain forms of cancer?
- Open Question
Those who inherit a mutant allele of the RB1 tumor-suppressor gene are at risk for developing a bone cancer called osteosarcoma. You suspect that in these cases, osteosarcoma requires a mutation in the second RB1 allele, and you have cultured some osteosarcoma cells and obtained a cDNA clone of a normal human RB1 gene. A colleague sends you a research paper revealing that a strain of cancer-prone mice develop malignant tumors when injected with osteosarcoma cells, and you obtain these mice. Using these three resources, what experiments would you perform to determine (a) whether osteosarcoma cells carry two RB1 mutations, (b) whether osteosarcoma cells produce any pRB protein, and (c) if the addition of a normal RB1 gene will change the cancer-causing potential of osteosarcoma cells?
- Open Question
The table in this problem summarizes some of the data that have been collected on mutations in the BRCA1 tumor-suppressor gene in families with a high incidence of both early-onset breast cancer and ovarian cancer.
Predisposing Mutations in BRCA1
Kindred Codon Nucleotide Coding Effect Frequency in
Change Control
Chromosomes
1901 24 -11 bp Frameshift 0/180
or splice
2082 1313 C→T Gln→Stop 0/170
1910 1756 Extra C Frameshift 0/162
2099 1775 T→G Met→Arg 0/120
2035 NA* ? Loss of NA*
transcript _
Source: (1994). Science 266:66–71. © AAAS.
Although the mutations listed in the table are clearly deleterious and cause breast cancer in women at very young ages, each of the kindred groups had at least one woman who carried the mutation but lived until age 80 without developing cancer. Name at least two different mechanisms (or variables) that could underlie variation in the expression of a mutant phenotype, and propose an explanation for the incomplete penetrance of this mutation. How do these mechanisms or variables relate to this explanation?