In pea plants, plant height, seed shape, and seed color are governed by three independently assorting genes. The three genes have dominant and recessive alleles, with tall (T) dominant to short (t), round (R) dominant to wrinkled (r), and yellow (G) dominant to green (g).
What proportion of the F₂ are expected to be tall, wrinkled, yellow? ttRRGg?
2. Mendel's Laws of Inheritance
Probability and Genetics
- Open Question
- Open Question
In pea plants, plant height, seed shape, and seed color are governed by three independently assorting genes. The three genes have dominant and recessive alleles, with tall (T) dominant to short (t), round (R) dominant to wrinkled (r), and yellow (G) dominant to green (g).
If a true-breeding tall, wrinkled, yellow plant is crossed to a true-breeding short, round, green plant, what phenotypic ratios are expected in the F₁ and F₂? - Open Question
In an 1889 book titled Natural Inheritance (Macmillan, New York), Francis Galton, who investigated the inheritance of measurable (quantitative) traits, formulated a law of 'ancestral inheritance.' The law stated that individuals inherit approximately one-half of their genetic traits from each parent, about one-quarter of the traits from each grandparent, one-eighth from each great grandparent, and so on. In light of the chromosome theory of heredity, argue either in favor of Galton's law or against it.
- Open QuestionAlbinism, caused by a mutational disruption in melanin (skin pigment) production, has been observed in many species, including humans. In 1991, and again recently in 2017, the only documented observations of an albino humpback whale (named 'Migaloo') were observed near New South Wales. Recently, Polanowski and coworkers (Polanowski, A., S. Robinson-Laverick, and D. Paton. (2012). Journal of Heredity 103:130–133) studied the genetics of humpback whales from the east coast of Australia, including Migaloo.What data would be helpful in determining the answer to part (a)?
- Open QuestionAlbinism, caused by a mutational disruption in melanin (skin pigment) production, has been observed in many species, including humans. In 1991, and again recently in 2017, the only documented observations of an albino humpback whale (named 'Migaloo') were observed near New South Wales. Recently, Polanowski and coworkers (Polanowski, A., S. Robinson-Laverick, and D. Paton. (2012). Journal of Heredity 103:130–133) studied the genetics of humpback whales from the east coast of Australia, including Migaloo.Do you think that Migaloo's albinism is more likely caused by a dominant or recessive mutation? Explain your reasoning.
- Open Question
A male and a female are each heterozygous for both cystic fibrosis (CF) and phenylketonuria (PKU). Both conditions are autosomal recessive, and they assort independently.
What proportion of the children of this couple will have neither condition? - Open QuestionAlbinism, caused by a mutational disruption in melanin (skin pigment) production, has been observed in many species, including humans. In 1991, and again recently in 2017, the only documented observations of an albino humpback whale (named 'Migaloo') were observed near New South Wales. Recently, Polanowski and coworkers (Polanowski, A., S. Robinson-Laverick, and D. Paton. (2012). Journal of Heredity 103:130–133) studied the genetics of humpback whales from the east coast of Australia, including Migaloo.Assuming that Migaloo's albinism is caused by a rare dominant gene, what would be the likelihood of the establishment of a natural robust subpopulation of albino white humpback whales in this population?
- Open QuestionAlbinism, caused by a mutational disruption in melanin (skin pigment) production, has been observed in many species, including humans. In 1991, and again recently in 2017, the only documented observations of an albino humpback whale (named 'Migaloo') were observed near New South Wales. Recently, Polanowski and coworkers (Polanowski, A., S. Robinson-Laverick, and D. Paton. (2012). Journal of Heredity 103:130–133) studied the genetics of humpback whales from the east coast of Australia, including Migaloo.Assuming that Migaloo's albinism is caused by a rare recessive gene, what would be the likelihood of the establishment of a natural robust subpopulation of albino white humpback whales in this population?
- Open Question
A woman expressing a dominant phenotype is heterozygous (Dd) for the gene.
What is the probability that two grandchildren of the woman who are first cousins to one another will each inherit the dominant allele? - Open Question
Two parents who are each known to be carriers of an autosomal recessive allele have four children. None of the children has the recessive condition. What is the probability that one or more of the children is a carrier of the recessive allele?
- Open Question
A man and a woman are each heterozygous carriers of an autosomal recessive mutation of a disorder that is fatal in infancy. They both want to have multiple children, but they are concerned about the risk of the disorder appearing in one or more of their children. In separate calculations, determine the probabilities of the couple having five children with 0, 1, 2, 3, 4, and all 5 children being affected by the disorder.
- Open QuestionDeep in a previously unexplored South American rain forest, a plant species was discovered with true-breeding varieties whose flowers were pink, rose, orange, or purple. A very astute plant geneticist made a single cross, carried to the F₂ generation, as shown:P₁: purple × pink F₁: all purple F₂: 27/64 purple16/64 pink12/64 rose9/64 orangeBased solely on these data, he proposed both a mode of inheritance for flower pigmentation and a biochemical pathway for the synthesis of these pigments.Carefully study the data. Create a hypothesis of your own to explain the mode of inheritance. Then propose a biochemical pathway consistent with your hypothesis. How could you test the hypothesis by making other crosses?
- Open Question
In a breed of domestic cattle, horns can appear on males and on females. Males and females can also be hornless. The following crosses are performed with parents from pure-breeding lines.
Explain the inheritance of this phenotype in cattle, and assign genotypes to all cattle in each cross. - Open Question
For a single dice roll, there is a 1/6 chance that any particular number will appear. For a pair of dice, each specific combination of numbers has a probability of 1/36 occurring. Most total values of two dice can occur more than one way. As a test of random probability theory, a student decides to roll a pair of six-sided dice 300 times and tabulate the results. She tabulates the number of times each different total value of the two dice occurs. Her results are the following:
Total Value of Two Dice Number of Times Rolled
2 7
3 11
4 23
5 36
6 42
7 53
8 40
9 38
10 30
11 12
12 8
TOTAL 300
The student tells you that her results fail to prove that random chance is the explanation for the outcome of this experiment. Is she correct or incorrect? Support your answer. - Open Question
Cross 1 shown in Figure 4.22 illustrates genetic complementation of flower-color mutants. The produced from this cross of two pure-breeding mutant parental plants are dihybrid (CcPp) and have wild-type flower color. If these F₁ are allowed to self-fertilize, what phenotypes are expected in the F₂ and what are the expected ratios of the phenotypes?