Problem 25
(a) What is the difference between chlorofluorocarbons and hydrofluorocarbons?
- Draw the Lewis structure for the chlorofluorocarbon CFC-11, CFCl3. What chemical characteristics of this substance allow it to effectively deplete stratospheric ozone?
Problem 26
- The average bond enthalpies of the C ¬ F and C ¬ Cl bonds are 485 kJ/mol and 328 kJ/mol, respectively. Given the fact that O2, N2, and O in the upper atmosphere absorb most of the light with wavelengths shorter than 240 nm, would you expect the photodissociation of C ¬ F bonds to be significant in the lower atmosphere?
Problem 27
- Would you expect the substance CFBr3 to accelerate the depletion of the ozone layer?
Problem 28
Problem 28a
(a) When chlorine atoms react with atmospheric ozone, what are the products of the reaction?
Problem 28b
(b) Based on average bond enthalpies, would you expect a photon capable of dissociating a C-Cl bond to have sufficient energy to dissociate a C-Br bond?
- Nitrogen oxides like NO2 and NO are a significant source of acid rain. For each of these molecules, write an equation that shows how an acid is formed from the reaction with water.
Problem 29
Problem 31a
(a) Write a chemical equation that describes the attack of acid rain on limestone, CaCO3.
Problem 31b
(b) If a limestone sculpture were treated to form a surface layer of calcium sulfate, would this help to slow down the effects of acid rain? Explain.
- The first stage in corrosion of iron upon exposure to air is oxidation to Fe2+. (a) Write a balanced chemical equation to show the reaction of iron with oxygen and protons from acid rain. (b) Would you expect the same sort of reaction to occur with a silver surface? Explain.
Problem 32
- Alcohol-based fuels for automobiles lead to the production of formaldehyde (CH2O) in exhaust gases. Formaldehyde undergoes photodissociation, which contributes to photochemical smog: CH2O + hn → CHO + H. The maximum wavelength of light that can cause this reaction is 335 nm. (c) Compare your answer from part (b) to the appropriate value from Table 8.3. What do you conclude about the C−H bond energy in formaldehyde?
Problem 33
Problem 33b
Alcohol-based fuels for automobiles lead to the production of formaldehyde (CH2O) in exhaust gases. Formaldehyde undergoes photodissociation, which contributes to photo- chemical smog: CH2O + hn ¡ CHO + H The maximum wavelength of light that can cause this reaction is 335 nm. (b) What is the maximum strength of a bond, in kJ/mol, that can be broken by absorption of a photon of 335-nm light?
Problem 33d
Alcohol-based fuels for automobiles lead to the production of formaldehyde (CH2O) in exhaust gases. Formaldehyde undergoes photodissociation, which contributes to photo- chemical smog: CH2O + hn ¡ CHO + H The maximum wavelength of light that can cause this reac- tion is 335 nm. (d) Write out the formaldehyde photodis- sociation reaction, showing Lewis-dot structures.
Problem 34a
An important reaction in the formation of photochemical smog is the photodissociation of NO : NO2 + hv → NO(g) + O(g) The maximum wavelength of light that can cause this reac- tion is 420 nm. (a) In what part of the electromagnetic spec- trum is light with this wavelength found?
Problem 34b
An important reaction in the formation of photochemical smog is the photodissociation of NO : NO2 + hv → NO(g) + O(g) The maximum wavelength of light that can cause this reaction is 420 nm. (b) What is the maximum strength of a bond, in kJ/mol, that can be broken by absorption of a photon of 420-nm light?
- The atmosphere of Mars is 96% CO2, with a pressure of approximately 6 * 10⁻³ atm at the surface. Based on measurements taken over a period of several years by the Rover Environmental Monitoring Station (REMS), the average daytime temperature at the REMS location on Mars is –5.7 °C (22 °F), while the average nighttime temperature is –79 °C (–109 °F). This daily variation in temperature is much larger than what we experience on Earth. What factor plays the largest role in this wide temperature variation, the composition or the density of the atmosphere?
Problem 36
Problem 37
What is the molarity of Na+ in a solution of NaCl whose salinity is 5.6 if the solution has a density of 1.03 g>mL?
Problem 38
Phosphorus is present in seawater to the extent of 0.07 ppm by mass. Assuming that the phosphorus is present as dihydrogenphosphate, H2PO4-, calculate the correspond-ing molar concentration of H2PO4- in seawater.
Problem 39a
The enthalpy of evaporation of water is 40.67 kJ/mol. Sunlight striking Earth's surface supplies 168 W per square meter (1 W = 1 watt = 1 J/s). (a) Assuming that evaporation of water is due only to energy input from the Sun, calculate how many grams of water could be evaporated from a 1.00 square meter patch of ocean over a 12-h day
Problem 39b
The enthalpy of evaporation of water is 40.67 kJ/mol. Sunlight striking Earth's surface supplies 168 W per square meter (1 W = 1 watt = 1 J/s). (b) The specific heat capacity of liquid water is 4.184 J/g°C. If the initial surface temperature of a 1.00 square meter patch of ocean is 26 °C, what is its final temperature after being in sunlight for 12 h, assuming no phase changes and assuming that sunlight penetrates uniformly to depth of 10.0 cm?
Problem 40b
The enthalpy of fusion of water is 6.01 kJ/mol. Sunlight striking Earth's surface supplies 168 W per square meter (1 W = 1 watt = 1 J/s). (b) The specific heat capacity of ice is 2.032 J/g°C. If the initial temperature of a 1.00 square emter patch of ice is -5.0°C, what is its final temperature after being in sunlight for 12 h, assuming no phase changes and assuming that sunlight penetration uniformly to a depth of 1.00 cm?
- At the first-stage recovery of magnesium from seawater, the precipitation of Mg(OH)2 with CaO occurs in the following reaction: Mg2+(aq) + CaO(s) + H2O(l) → Mg(OH)2(s) + Ca2+(aq). What mass of CaO, in grams, is needed to precipitate 1000 lb of Mg(OH)2?
Problem 41
- Gold is found in seawater at very low levels, about 0.05 ppb by mass. Assuming that gold is worth about $1300 per troy ounce, how many liters of seawater would you have to process to obtain $1,000,000 worth of gold? Assume the density of water is 1.03 g/mL and that your gold recovery process is 50% efficient.
Problem 42
Problem 44a
The Ogallala aquifer described in the Closer Look box in Section 18.3, provides 82% of the drinking water for the people who live in the region, although more than 75% of the water that is pumped from it is for irrigation. Irrigation withdrawals are approximately 18 billion gallons per day. (a) Assuming that 2% of the rainfall that falls on an area of 600,000 km2 recharges the aquifer, what average annual rainfall would be required to replace the water removed for irrigation?
Problem 44b
The Ogallala aquifer described in the Closer Look box in Section 18.3, provides 82% of the drinking water for the people who live in the region, although more than 75% of the water that is pumped from it is for irrigation. Irrigation withdrawals are approximately 18 billion gallons per day. (b) What process or processes accounts for the presence of arsenic in well water?
- Assume that a portable reverse-osmosis apparatus operates on seawater, whose concentrations of constituent ions are listed in Table 18.5, and that the desalinated water output has an effective molarity of about 0.02 M. What minimum pressure must be applied by hand pumping at 297 K to cause reverse osmosis to occur? (Hint: Refer to Section 13.5.)
Problem 46
- List the common products formed when an organic material containing the elements carbon, hydrogen, oxygen, sulfur, and nitrogen decomposes (a) under aerobic conditions, (b) under anaerobic conditions.
Problem 47
Problem 49
The organic anion
is found in most detergents. Assume that the anion under-goes aerobic decomposition in the following manner: C18H29SO3- + 51 O2 → 36 CO2(aq) + 28 H2O (l) + 2 H+(aq) + 2 SO42-(aq) What is the total mass of O2 required to biodegrade 10.0 g of this substance?
Problem 51
Magnesium ions are removed in water treatment by the addition of slaked lime, Ca(OH)2. Write a balanced chemical equation to describe what occurs in this process
Problem 52
In the lime soda process once used in large scale munici-pal water softening, calcium hydroxide prepared from lime and sodium carbonate are added to precipitate Ca2+ as CaCO3(s) and Mg2+ as Mg(OH)2(s): Ca2+(aq) + CO32-(aq) → CaCO3(s) Mg2+(aq) + 2 OH-(aq) → MgOH2(aq) How many moles of Ca(OH)2 and Na2CO3 should be added to soften (remove the Ca2+ and Mg2+) 1200 L of water in which [Ca2+] = 5.0x10-4 M and [Mg2+] = 7.0x10-4 M?
Ch.18 - Chemistry of the Environment