Independent Samples Which of the following involve independent samples?
a. Data Set 4 “Measured and Reported” includes measured heights matched with the heights that were reported when the subjects were asked for those values.
Independent Samples Which of the following involve independent samples?
a. Data Set 4 “Measured and Reported” includes measured heights matched with the heights that were reported when the subjects were asked for those values.
Independent Samples Which of the following involve independent samples?
b. Data Set 6 “Births” includes birth weights of a sample of baby boys and a sample of baby girls.
Independent Samples Which of the following involve independent samples?
c. Data Set 1 “Body Data” includes a sample of pulse rates of 147 women and a sample of pulse rates of 153 men.
Statistical Literacy and Critical Thinking
In Exercises 1–4, use the results from a Hankook Tire Gauge Index survey of a simple random sample of 1020 adults. Among the 1020 respondents, 86% rated themselves as above average drivers. We want to test the claim that more than 3/4 of adults rate themselves as above average drivers.
Number and Proportions
a. Identify the actual number of respondents who rated themselves as above average drivers.
At Least As Extreme A random sample of 860 births in New York State included 426 boys, and that sample is to be used for a test of the common belief that the proportion of male births in the population is equal to 0.512.
b. For random samples of size 860, what sample proportions of male births are at least as extreme as the sample proportion of 426/860?
Discarded Plastic Data Set 42 “Garbage Weight” includes weights (pounds) of discarded plastic from 62 different households. Those 62 weights have a mean of 1.911 pounds and a standard deviation of 1.065 pounds. We want to use a 0.05 level of significance to test the claim that this sample is from a population with a mean less than 2.000 pounds. Identify the null hypothesis and alternative hypothesis.
Discarded Plastic Find the test statistic used for the hypothesis test described in Exercise 1.
Discarded Plastic
What distribution is used for the hypothesis test described in Exercise 1?
For the hypothesis test described in Exercise 1, is it necessary to determine whether the 62 weights appear to be from a population having a normal distribution? Why or why not?
Discarded Plastic The P-value for the hypothesis test described in Exercise 1 is 0.2565.
What should be concluded about the null hypothesis?
What is the final conclusion that addresses the original claim?
Robust Explain what is meant by the statements that the t test for a claim about μ is robust, but the (chi)^2 test for a claim about σ is not robust.
In Exercises 5–16, use the listed paired sample data, and assume that the samples are simple random samples and that the differences have a distribution that is approximately normal.
Heights of Presidents A popular theory is that presidential candidates have an advantage if they are taller than their main opponents. Listed are heights (cm) of presidents along with the heights of their main opponents (from Data Set 22 “Presidents” in Appendix B).
a. Use the sample data with a 0.05 significance level to test the claim that for the population of heights of presidents and their main opponents, the differences have a mean greater than 0 cm.
In Exercises 5–16, use the listed paired sample data, and assume that the samples are simple random samples and that the differences have a distribution that is approximately normal.
The Freshman 15 The “Freshman 15” refers to the belief that college students gain 15 lb (or 6.8 kg) during their freshman year. Listed below are weights (kg) of randomly selected male college freshmen (from Data Set 13 “Freshman 15” in Appendix B). The weights were measured in September and later in April.
c. What do you conclude about the Freshman 15 belief?
In Exercises 5–16, use the listed paired sample data, and assume that the samples are simple random samples and that the differences have a distribution that is approximately normal.
The Freshman 15 The “Freshman 15” refers to the belief that college students gain 15 lb (or 6.8 kg) during their freshman year. Listed below are weights (kg) of randomly selected male college freshmen (from Data Set 13 “Freshman 15” in Appendix B). The weights were measured in September and later in April.
b. Construct the confidence interval that could be used for the hypothesis test described in part (a). What feature of the confidence interval leads to the same conclusion reached in part (a)?
In Exercises 5–16, use the listed paired sample data, and assume that the samples are simple random samples and that the differences have a distribution that is approximately normal.
The Freshman 15 The “Freshman 15” refers to the belief that college students gain 15 lb (or 6.8 kg) during their freshman year. Listed below are weights (kg) of randomly selected male college freshmen (from Data Set 13 “Freshman 15” in Appendix B). The weights were measured in September and later in April.
a. Use a 0.01 significance level to test the claim that for the population of freshman male college students, the weights in September are less than the weights in the following April.
In Exercises 5–16, use the listed paired sample data, and assume that the samples are simple random samples and that the differences have a distribution that is approximately normal.
Do Men Talk Less than Women? Listed below are word counts of males and females in couple relationships (from Data Set 14 “Word Counts” in Appendix B).
b. Construct the confidence interval that could be used for the hypothesis test described in part (a). What feature of the confidence interval leads to the same conclusion reached in part (a)?