Problem 33a(ii)
Consider the reaction: H2(g) + Br2(g) → 2 HBr(g). The graph shows the concentration of Br2 as a function of time. a. Use the graph to calculate each quantity: (ii) the instantaneous rate of the reaction at 25 s.
Problem 33b
Consider the reaction: H2( g) + Br2( g) → 2 HBr( g) The graph shows the concentration of Br2 as a function of time.
b. Make a rough sketch of a curve representing the concentration of HBr as a function of time. Assume that the initial concentration of HBr is zero
- Consider the reaction: 2 H2O2(aq) → 2 H2O(l) + O2(g). The graph shows the concentration of H2O2 as a function of time. Use the graph to calculate each quantity: a. the average rate of the reaction between 10 and 20 seconds, b. the instantaneous rate of the reaction at 30 seconds.
Problem 34
Problem 34c
Consider the reaction: 2 H2O2(aq) → 2 H2O(l ) + O2( g) The graph shows the concentration of H2O2 as a function of time.
Use the graph to calculate each quantity: c. the instantaneous rate of formation of O2 at 50 s
Problem 34d
Consider the reaction: 2 H2O2(aq) → 2 H2O(l ) + O2( g) The graph shows the concentration of H2O2 as a function of time. Use the graph to calculate each quantity: d. If the initial volume of the H2O2 is 1.5 L, what total amount of O2 (in moles) is formed in the first 50 s of reaction?
Problem 35a
This graph shows a plot of the rate of a reaction versus the concentration of the reactant A for the reaction A → products. a. What is the order of the reaction with respect to A?
Problem 35c
This graph shows a plot of the rate of a reaction versus the concentration of the reactant A for the reaction A → products. c. Write a rate law for the reaction including an estimate for the value of k.
Problem 36a
This graph shows a plot of the rate of a reaction versus the concentration of the reactant.
a. What is the order of the reaction with respect to A?
Problem 36b
This graph shows a plot of the rate of a reaction versus the concentration of the reactant.
b. Make a rough sketch of a plot of [A] versus time
Problem 36c
This graph shows a plot of the rate of a reaction versus the concentration of the reactant.
c. Write a rate law for the reaction including the value of k.
Problem 37
What are the units of k for each type of reaction?
a. first-order reaction
b. second-order reaction
c. zero-order reaction
Problem 38a
This reaction is first order in N2O5: N2O5(g) → NO3(g) + NO2(g) The rate constant for the reaction at a certain temperature is 0.053/s. a. Calculate the rate of the reaction when [N2O5] = 0.055 M
Problem 38b
This reaction is first order in N2O5: N2O5(g) → NO3(g) + NO2(g) The rate constant for the reaction at a certain temperature is 0.053/s. b. What would the rate of the reaction be at the concentration indicated in part a if the reaction were second order? Zero order? (Assume the same numerical value for the rate constant with the appropriate units.)
Problem 39a
A reaction in which A, B, and C react to form products is first order in A, second order in B, and zero order in C.
a. Write a rate law for the reaction.
Problem 39b
A reaction in which A, B, and C react to form products is first order in A, second order in B, and zero order in C. b. What is the overall order of the reaction?
Problem 39c,d,e,f
A reaction in which A, B, and C react to form products is first order in A, second order in B, and zero order in C c. By what factor does the reaction rate change if [A] is doubled (and the other reactant concentrations are held constant)? d. By what factor does the reaction rate change if [B] is doubled (and the other reactant concentrations are held constant)? e. By what factor does the reaction rate change if [C] is doubled? f. By what factor does the reaction rate change if the concentrations of all three reactants are doubled?
Problem 40a
A reaction in which A, B, and C react to form products is zero order in A, one-half order in B, and second order in C. a. Write a rate law for the reaction.
Problem 40b
A reaction in which A, B, and C react to form products is zero order in A, one-half order in B, and second order in C. b. What is the overall order of the reaction? order in A, one-half order in B, and second order in C
Problem 40c,d,e,f
A reaction in which A, B, and C react to form products is zero order in A, one-half order in B, and second order in C. c. By what factor does the reaction rate change if [A] is doubled (and the other reactant concentrations are held constant)? d. By what factor does the reaction rate change if [B] is doubled? e. By what factor does the reaction rate change if [C] is doubled? f. By what factor does the reaction rate change if [C] is doubled (and the other reactant concentrations are held constant)?
- Consider the data showing the initial rate of a reaction (A → products) at several different concentrations of A. What is the order of the reaction? Write a rate law for the reaction including the value of the rate constant, k.
Problem 41
- Consider the tabulated data showing the initial rate of a reaction (A → products) at several different concentrations of A. What is the order of the reaction? Write a rate law for the reaction including the value of the rate constant, k.
Problem 43
Problem 44
Consider the tabulated data showing the initial rate of a reaction (A → products) at several different concentrations of A. What is the order of the reaction? Write a rate law for the reaction including the value of the rate constant, k.
- The tabulated data were collected for this reaction: 2 NO2(g) + F2(g) → 2 NO2F(g). Write an expression for the reaction rate law and calculate the value of the rate constant, k. What is the overall order of the reaction?
Problem 45
Problem 46
The tabulated data were collected for this reaction: CH3Cl(g) + 3 Cl2(g) → CCl4( g) + 3 HCl(g)
Write an expression for the reaction rate law and calculate the value of the rate constant, k. What is the overall order of the reaction?
Problem 47
Indicate the order of reaction consistent with each observation. a. A plot of the concentration of the reactant versus time yields a straight line. Indicate the order of reaction consistent with each observation b. The reaction has a half-life that is independent of initial concentration. c. A plot of the inverse of the concentration versus time yields a straight line.
Problem 48a,b
Indicate the order of reaction consistent with each observation.
a. The half-life of the reaction gets shorter as the initial concentration is increased.
b. A plot of the natural log of the concentration of the reactant versus time yields a straight line.
Problem 48c
Indicate the order of reaction consistent with each observation c. The half-life of the reaction gets longer as the initial concentration is increased.
Problem 49
The tabulated data show the concentration of AB versus time for this reaction: AB( g)¡A( g) + B( g) Time (s) [AB] (M) 0 0.950 50 0.459 100 0.302 150 0.225 200 0.180 250 0.149 300 0.128 350 0.112 400 0.0994 450 0.0894 500 0.0812 Determine the order of the reaction and the value of the rate constant. Predict the concentration of AB at 25 s.
- The tabulated data show the concentration of cyclobutane (C4H8) versus time for this reaction: C4H8 -> 2 C2H4. Time (s) [C4H8] (M) 0 1.000 10 0.894 20 0.799 30 0.714 40 0.638 50 0.571 60 0.510 70 0.456 80 0.408 90 0.364 100 0.326. Determine the order of the reaction and the value of the rate constant. What is the rate of reaction when [C4H8] = 0.25 M?
Problem 51
Problem 52
The reaction A¡products was monitored as a function of time. The results are shown here. Time (s) [A] (M) 0 1.000 25 0.914 50 0.829 75 0.744 100 0.659 125 0.573 150 0.488 175 0.403 200 0.318 Determine the order of the reaction and the value of the rate constant. What is the rate of reaction when [A] = 0.10 M?
Ch.14 - Chemical Kinetics