A bug is moving along the right side of the parabola y=x² at a rate such that its distance from the origin is increasing at 1 cm/min.
b. Use the equation y=x² to find an equation relating dy/dt to dx/dt.
A bug is moving along the right side of the parabola y=x² at a rate such that its distance from the origin is increasing at 1 cm/min.
b. Use the equation y=x² to find an equation relating dy/dt to dx/dt.
A water heater that has the shape of a right cylindrical tank with a radius of 1 ft and a height of 4 ft is being drained. How fast is water draining out of the tank (in ft³/min) if the water level is dropping at 6 min/in?
Water is drained out of an inverted cone that has the same dimensions as the cone depicted in Exercise 36. If the water level drops at 1 ft/min, at what rate is water (in ft³/min) draining from the tank when the water depth is 6 ft?
A 12-ft ladder is leaning against a vertical wall when Jack begins pulling the foot of the ladder away from the wall at a rate of 0.2 ft/s. What is the configuration of the ladder at the instant when the vertical speed of the top of the ladder equals the horizontal speed of the foot of the ladder?
A surface ship is moving (horizontally) in a straight line at 10 km/hr. At the same time, an enemy submarine maintains a position directly below the ship while diving at an angle that is 20° below the horizontal. How fast is the submarine’s altitude decreasing?
An angler hooks a trout and begins turning her circular reel at 1.5 rev/s. Assume the radius of the reel (and the fishing line on it) is 2 inches.
a. Let R equal the number of revolutions the angler has turned her reel and suppose L is the amount of line that she has reeled in. Find an equation for L as a function of R.
Robert Boyle (1627–1691) found that for a given quantity of gas at a constant temperature, the pressure P (in kPa) and volume V of the gas (in m³) are accurately approximated by the equation V=k/P, where k>0 is constant. Suppose the volume of an expanding gas is increasing at a rate of 0.15 m³/min when the volume V=0.5 m³ and the pressure is P=50 kPa. At what rate is pressure changing at this moment?
Two boats leave a port at the same time, one traveling west at 20 mi/hr and the other traveling southwest ( 45° south of west) at 15 mi/hr. After 30 minutes, how far apart are the boats and at what rate is the distance between them changing? (Hint: Use the Law of Cosines.)
A spherical balloon is inflated at a rate of 10 cm³/min. At what rate is the diameter of the balloon increasing when the balloon has a diameter of 5 cm?
Water flows into a conical tank at a rate of 2 ft³/min. If the radius of the top of the tank is 4 ft and the height is 6 ft, determine how quickly the water level is rising when the water is 2 ft deep in the tank.
A jet flying at 450 mi/hr and traveling in a straight line at a constant elevation of 500 ft passes directly over a spectator at an air show. How quickly is the angle of elevation (between the ground and the line from the spectator to the jet) changing 2 seconds later?
Watching an elevator An observer is 20 m above the ground floor of a large hotel atrium looking at a glass-enclosed elevator shaft that is 20 m horizontally from the observer (see figure). The angle of elevation of the elevator is the angle that the observer’s line of sight makes with the horizontal (it may be positive or negative). Assuming the elevator rises at a rate of 5 m/s, what is the rate of change of the angle of elevation when the elevator is 10 m above the ground? When the elevator is 40 m above the ground? <IMAGE>
The bottom of a large theater screen is 3 ft above your eye level and the top of the screen is 10 ft above your eye level. Assume you walk away from the screen (perpendicular to the screen) at a rate of 3 ft/s while looking at the screen. What is the rate of change of the viewing angle θ when you are 30 ft from the wall on which the screen hangs, assuming the floor is horizontal (see figure)? <IMAGE>
A ship leaves port traveling southwest at a rate of 12 mi/hr. At noon, the ship reaches its closest approach to a radar station, which is on the shore 1.5 mi from the port. If the ship maintains its speed and course, what is the rate of change of the tracking angle θ between the radar station and the ship at 1:30 P.M. (see figure)? (Hint: Use the Law of Sines.) <IMAGE>
Parabolic motion An arrow is shot into the air and moves along the parabolic path y=x(50−x) (see figure). The horizontal component of velocity is always 30 ft/s. What is the vertical component of velocity when (a) x=10 and (b) x=40? <IMAGE>