Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a- f(x) and lim x→a+ f(x).
f(x) = (x^4−1)/(x^2−1)
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a- f(x) and lim x→a+ f(x).
f(x) = (x^4−1)/(x^2−1)
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x)=√x^2+2x+6−3 / x−1
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a^− f(x) and lim x→a^+f(x).
f(x)=√x^2+2x+6−3 / x−1
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x)=|1−x^2| / x(x+1)
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a^− f(x) and lim x→a^+f(x).
f(x)=|1−x^2| / x(x+1)
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x)=3e^x+10 / e^x
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a^− f(x) and lim x→a^+f(x).
f(x)=3e^x+10 / e^x
Analyze lim x→∞ f(x) and lim x→−∞ f(x), and then identify any horizontal asymptotes.
f(x)=cos x+2√x / √x.
Find the vertical asymptotes. For each vertical asymptote x=a, analyze lim x→a^− f(x) and lim x→a^+f(x).
f(x)=cos x+2√x / √x.
The hyperbolic cosine function, denoted , is used to model the shape of a hanging cable (a telephone wire, for example). It is defined as .
a. Determine its end behavior by analyzing and .
Evaluate each limit.
lim θ→0 (1/(2+sinθ)-1/2)/sin θ
Evaluate each limit.
lim x→0 cos x−1 / sin^2x
Evaluate each limit.
lim x→0 e^4x−1 / e^x−1
Evaluate each limit.
lim x→0+ 1−cos^2x / sin x
Evaluate each limit.
lim x→e^2 ln^2x−5 ln x+6 lnx−2