Evaluate the given logarithm.
Table of contents
- 0. Functions4h 53m
- 1. Limits and Continuity2h 2m
- 2. Intro to Derivatives1h 33m
- 3. Techniques of Differentiation2h 18m
- 4. Derivatives of Exponential & Logarithmic Functions1h 16m
- 5. Applications of Derivatives2h 19m
- 6. Graphical Applications of Derivatives6h 0m
- 7. Antiderivatives & Indefinite Integrals48m
- 8. Definite Integrals4h 36m
- 9. Graphical Applications of Integrals1h 43m
- 10. Integrals of Inverse, Exponential, & Logarithmic Functions21m
- 11. Techniques of Integration2h 7m
- 12. Trigonometric Functions6h 54m
- Angles29m
- Trigonometric Functions on Right Triangles1h 8m
- Solving Right Triangles23m
- Trigonometric Functions on the Unit Circle1h 19m
- Graphs of Sine & Cosine46m
- Graphs of Other Trigonometric Functions32m
- Trigonometric Identities52m
- Derivatives of Trig Functions42m
- Integrals of Basic Trig Functions28m
- Integrals of Other Trig Functions10m
- 13: Intro to Differential Equations2h 23m
- 14. Sequences & Series2h 8m
- 15. Power Series2h 19m
- 16. Probability & Calculus45m
0. Functions
Properties of Logarithms
Struggling with Business Calculus?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Write the single logarithm as a sum or difference of logs.
log5(x35(2x+3)2)
A
5+2log5(2x+3)−log53x
B
2log5(2x+3)−3log5x
C
1+2log5(2x+3)−3log5x
D
log5(2x+3)−log5x

1
Step 1: Start with the given logarithmic expression: log_5((5(2x+3)^2)/(x^3)). Use the logarithmic property log_b(A/B) = log_b(A) - log_b(B) to split the numerator and denominator. This gives log_5(5(2x+3)^2) - log_5(x^3).
Step 2: Focus on the first term, log_5(5(2x+3)^2). Use the logarithmic property log_b(A * B) = log_b(A) + log_b(B) to separate the product. This results in log_5(5) + log_5((2x+3)^2).
Step 3: Simplify log_5(5). Since log_b(b) = 1 for any base b, log_5(5) simplifies to 1. Now the expression becomes 1 + log_5((2x+3)^2).
Step 4: Apply the logarithmic power rule log_b(A^n) = n * log_b(A) to log_5((2x+3)^2). This simplifies to 1 + 2 * log_5(2x+3).
Step 5: Simplify the second term, -log_5(x^3), using the power rule. This becomes -3 * log_5(x). Combine all terms to get the final expression: 1 + 2 * log_5(2x+3) - 3 * log_5(x).
Related Videos
Related Practice
Multiple Choice
Properties of Logarithms practice set
