Skip to main content
Pearson+ LogoPearson+ Logo
Ch. 3 - Cell Division and Chromosome Heredity
Sanders - Genetic Analysis: An Integrated Approach 3rd Edition
Sanders3rd EditionGenetic Analysis: An Integrated ApproachISBN: 9780135564172Not the one you use?Change textbook
Chapter 3, Problem 32i

From a piece of blank paper, cut out three sets of four cigar-shaped structures (a total of 12 structures). These will represent chromatids. Be sure each member of a set of four chromatids has the same length and girth. In set one, label two chromatids 'A' and two chromatids 'a.' Cut each of these chromatids about halfway across near their midpoint and slide the two 'A' chromatids together at the cuts, to form a single set of attached sister chromatids. Do the same for the 'a' chromatids. In the second set of four chromatids, label two 'B' and two 'b.' Cut and slide these together as you did for the first set, joining the 'B' chromatids together and the 'b' chromatids together. Repeat this process for the third set of chromatids, labeling them as 'D' and 'd.' You now have models for three pairs of homologous chromosomes, for a total of six chromosomes. Align the chromosomes of each daughter cell as they might appear in metaphase II of meiosis.

Verified step by step guidance
1
Step 1: Understand the concept of homologous chromosomes and sister chromatids. Homologous chromosomes are pairs of chromosomes, one inherited from each parent, that have the same genes but may have different alleles. Sister chromatids are identical copies of a chromosome connected at the centromere.
Step 2: Prepare the physical model. Cut out 12 cigar-shaped structures from paper, ensuring they are of equal size. Label them as follows: Set 1 - two 'A' and two 'a'; Set 2 - two 'B' and two 'b'; Set 3 - two 'D' and two 'd'.
Step 3: Simulate the formation of sister chromatids. For each set, cut the chromatids halfway across near their midpoint and slide the two chromatids of the same label together at the cuts. This forms attached sister chromatids for 'A', 'a', 'B', 'b', 'D', and 'd'.
Step 4: Arrange the homologous chromosomes. Pair the sister chromatids labeled 'A' with 'a', 'B' with 'b', and 'D' with 'd'. This creates three pairs of homologous chromosomes, representing six chromosomes in total.
Step 5: Align the chromosomes for metaphase II. In metaphase II of meiosis, the sister chromatids of each chromosome align at the metaphase plate in each daughter cell. Arrange the chromosomes in two separate groups, ensuring that each group has one sister chromatid from each homologous pair ('A', 'a', 'B', 'b', 'D', 'd').

Verified video answer for a similar problem:

This video solution was recommended by our tutors as helpful for the problem above.
Video duration:
4m
Was this helpful?

Key Concepts

Here are the essential concepts you must grasp in order to answer the question correctly.

Chromatids

Chromatids are the two identical halves of a replicated chromosome, which are joined together at a region called the centromere. During cell division, specifically in meiosis, chromatids play a crucial role in ensuring that genetic material is accurately distributed to daughter cells. Each chromatid contains a single DNA molecule, and they are essential for the process of genetic recombination and segregation.
Recommended video:

Homologous Chromosomes

Homologous chromosomes are pairs of chromosomes that have the same structure and carry genes for the same traits, but may have different alleles. One chromosome of each pair is inherited from each parent. During meiosis, homologous chromosomes undergo pairing and recombination, which increases genetic diversity in gametes. Understanding homologous chromosomes is vital for grasping how traits are inherited and how genetic variation occurs.
Recommended video:
Guided course
07:10
Chromosome Structure

Metaphase II of Meiosis

Metaphase II is a stage in the second division of meiosis where the chromosomes align at the cell's equatorial plane. Unlike metaphase I, where homologous chromosomes pair up, in metaphase II, the sister chromatids are aligned individually. This alignment is crucial for the proper separation of chromatids into daughter cells, ensuring that each gamete receives the correct number of chromosomes. This stage is key to understanding the mechanics of meiosis and the formation of gametes.
Recommended video:
Guided course
09:06
Meiosis Steps
Related Practice
Textbook Question

From a piece of blank paper, cut out three sets of four cigar-shaped structures (a total of 12 structures). These will represent chromatids. Be sure each member of a set of four chromatids has the same length and girth. In set one, label two chromatids 'A' and two chromatids 'a.' Cut each of these chromatids about halfway across near their midpoint and slide the two 'A' chromatids together at the cuts to form a single set of attached sister chromatids. Do the same for the 'a' chromatids. In the second set of four chromatids, label two 'B' and two 'b.' Cut and slide these together as you did for the first set, joining the 'B' chromatids together and the 'b' chromatids together. Repeat this process for the third set of chromatids, labeling them as 'D' and 'd.' You now have models for three pairs of homologous chromosomes, for a total of six chromosomes. What are the genotypes of the daughter cells?

1
views
Textbook Question

From a piece of blank paper, cut out three sets of four cigar-shaped structures (a total of 12 structures). These will represent chromatids. Be sure each member of a set of four chromatids has the same length and girth. In set one, label two chromatids 'A' and two chromatids 'a.' Cut each of these chromatids about halfway across near their midpoint and slide the two 'A' chromatids together at the cuts, to form a single set of attached sister chromatids. Do the same for the 'a' chromatids. In the second set of four chromatids, label two 'B' and two 'b.' Cut and slide these together as you did for the first set, joining the 'B' chromatids together and the 'b' chromatids together. Repeat this process for the third set of chromatids, labeling them as 'D' and 'd.' You now have models for three pairs of homologous chromosomes, for a total of six chromosomes. Are there any alternative alignments of the chromosomes for this cell-division stage? Explain.

1
views
Textbook Question

From a piece of blank paper, cut out three sets of four cigar-shaped structures (a total of 12 structures). These will represent chromatids. Be sure each member of a set of four chromatids has the same length and girth. In set one, label two chromatids 'A' and two chromatids 'a.' Cut each of these chromatids about halfway across near their midpoint and slide the two 'A' chromatids together at the cuts to form a single set of attached sister chromatids. Do the same for the 'a' chromatids. In the second set of four chromatids, label two 'B' and two 'b.' Cut and slide these together as you did for the first set, joining the 'B' chromatids together and the 'b' chromatids together. Repeat this process for the third set of chromatids, labeling them as 'D' and 'd.' You now have models for three pairs of homologous chromosomes, for a total of six chromosomes. Separate the chromosomes as though meiotic anaphase I and telophase I have taken place.

1
views
Textbook Question

From a piece of blank paper, cut out three sets of four cigar-shaped structures (a total of 12 structures). These will represent chromatids. Be sure each member of a set of four chromatids has the same length and girth. In set one, label two chromatids 'A' and two chromatids 'a.' Cut each of these chromatids about halfway across near their midpoint and slide the two 'A' chromatids together at the cuts to form a single set of attached sister chromatids. Do the same for the 'a' chromatids. In the second set of four chromatids, label two 'B' and two 'b.' Cut and slide these together as you did for the first set, joining the 'B' chromatids together and the 'b' chromatids together. Repeat this process for the third set of chromatids, labeling them as 'D' and 'd.' You now have models for three pairs of homologous chromosomes, for a total of six chromosomes. Are there any alternative alignments of the chromosomes for this cell-division stage? Explain.

1
views
Textbook Question

From a piece of blank paper, cut out three sets of four cigar-shaped structures (a total of 12 structures). These will represent chromatids. Be sure each member of a set of four chromatids has the same length and girth. In set one, label two chromatids 'A' and two chromatids 'a.' Cut each of these chromatids about halfway across near their midpoint and slide the two 'A' chromatids together at the cuts to form a single set of attached sister chromatids. Do the same for the 'a' chromatids. In the second set of four chromatids, label two 'B' and two 'b.' Cut and slide these together as you did for the first set, joining the 'B' chromatids together and the 'b' chromatids together. Repeat this process for the third set of chromatids, labeling them as 'D' and 'd.' You now have models for three pairs of homologous chromosomes, for a total of six chromosomes. Separate the chromosomes as though anaphase II and telophase II have taken place.

1
views
Textbook Question

From a piece of blank paper, cut out three sets of four cigar-shaped structures (a total of 12 structures). These will represent chromatids. Be sure each member of a set of four chromatids has the same length and girth. In set one, label two chromatids 'A' and two chromatids 'a.' Cut each of these chromatids about halfway across near their midpoint and slide the two 'A' chromatids together at the cuts to form a single set of attached sister chromatids. Do the same for the 'a' chromatids. In the second set of four chromatids, label two 'B' and two 'b.' Cut and slide these together as you did for the first set, joining the 'B' chromatids together and the 'b' chromatids together. Repeat this process for the third set of chromatids, labeling them as 'D' and 'd.' You now have models for three pairs of homologous chromosomes, for a total of six chromosomes. What are the genotypes of the daughter cells?

1
views