Sanders 3rd Edition
Ch. 20 - Population Genetics and Evolution at the Population, Species, and Molecular LevelsProblem 40a
Divide the contents of a large bag of different-colored candies randomly and approximately equally among the members of the group. Do not pick specific candy colors, but simply empty the contents of the bag onto a table and quickly divide the pile. If you are doing this exercise by yourself, divide the contents of the bag into five piles. Have each person count the number of candies of each color in they pile and calculate the frequency of each color in the pile.
Problem 40b
Divide the contents of a large bag of different-colored candies randomly and approximately equally among the members of the group. Do not pick specific candy colors, but simply empty the contents of the bag onto a table and quickly divide the pile. If you are doing this exercise by yourself, divide the contents of the bag into five piles. Tabulate the total number of candies of each color in the original bag by combining the numbers from each person. Use these numbers to determine the frequency of each color in the original bag.
Problem 40c
Divide the contents of a large bag of different-colored candies randomly and approximately equally among the members of the group. Do not pick specific candy colors, but simply empty the contents of the bag onto a table and quickly divide the pile. If you are doing this exercise by yourself, divide the contents of the bag into five piles. Have each person compare the frequencies of each color in they pile with the frequencies in the original bag. Describe any differences in frequency between the pile and the original bag.
Problem 40d
Divide the contents of a large bag of different-colored candies randomly and approximately equally among the members of the group. Do not pick specific candy colors, but simply empty the contents of the bag onto a table and quickly divide the pile. If you are doing this exercise by yourself, divide the contents of the bag into five piles. Identify what phenomenon explains the observed differences. What evolutionary mechanism do the observations emulate?
Problem 41a
Put all the candies used in Problem 40 into a single mound and then divide them into four equal piles, this time being sure that the frequency of each color is the same in each pile. Label two of these piles 'male' and the other two 'female.' Half of the group will take one male and one female pile, and the other half of the group will take the other two piles. Each half of the group will carry out its own experiments: Blindly draw one candy from the male pile and one candy from the female pile. Record the colors of the two candies as though they were a genotype. Put the candies back into their respective piles.
Problem 41b
Put all the candies used in Problem 40 into a single mound and then divide them into four equal piles, this time being sure that the frequency of each color is the same in each pile. Label two of these piles 'male' and the other two 'female.' Half of the group will take one male and one female pile, and the other half of the group will take the other two piles. Each half of the group will carry out its own experiments: Repeat this activity 24 more times, recording the 'genotype' each time.
Problem 41c
Put all the candies used in Problem 40 into a single mound and then divide them into four equal piles, this time being sure that the frequency of each color is the same in each pile. Label two of these piles 'male' and the other two 'female.' Half of the group will take one male and one female pile, and the other half of the group will take the other two piles. Each half of the group will carry out its own experiments: Determine the frequency of each candy color in the total of 25 draws (a total of 50 candies) and compare these frequencies with the original frequencies of the colors in the pile.
Problem 41d
Put all the candies used in Problem 40 into a single mound and then divide them into four equal piles, this time being sure that the frequency of each color is the same in each pile. Label two of these piles 'male' and the other two 'female.' Half of the group will take one male and one female pile, and the other half of the group will take the other two piles. Each half of the group will carry out its own experiments: Explain any observed differences in frequencies in terms of the evolutionary mechanism the results best emulate.
Problem 42a
Put all the candies used in Problems 41 back into a single mound and then divide them into two piles, being sure that the frequencies of each color are the same in each pile. Make a note of the starting frequency of each color. Label one pile 'male' and the other pile 'female.'
Have one person blindly draw one candy from the male pile and one candy from the female pile. Record the colors as though they were genotypes.
Problem 42b
Put all the candies used in Problems 41 back into a single mound and then divide them into two piles, being sure that the frequencies of each color are the same in each pile. Make a note of the starting frequency of each color. Label one pile 'male' and the other pile 'female.'
If both colors drawn are yellow, eat the candies! If the two colors are any other combination, including yellow with any other color, put the candies back into their respective piles.
Problem 42c
Put all the candies used in Problems 41 back into a single mound and then divide them into two piles, being sure that the frequencies of each color are the same in each pile. Make a note of the starting frequency of each color. Label one pile 'male' and the other pile 'female.'
Repeat this process of blindly drawing one male and one female candy 12 to 15 times for each person in the group.
Problem 42d
Put all the candies used in Problems 41 back into a single mound and then divide them into two piles, being sure that the frequencies of each color are the same in each pile. Make a note of the starting frequency of each color. Label one pile 'male' and the other pile 'female.'
When all selection rounds have been completed, combine the two piles and determine the frequency of each color.
Problem 42e
Put all the candies used in Problems 41 back into a single mound and then divide them into two piles, being sure that the frequencies of each color are the same in each pile. Make a note of the starting frequency of each color. Label one pile 'male' and the other pile 'female.'
Compare the starting frequency of each color with the frequency after drawing. Describe the observed differences and identify the evolutionary mechanism this exercise best emulates.
Problem 43a
There are usually five or more colors of candy in each bag. Sort the candies by color, and if your bag has more than four colors, eat the least frequent color or colors. Once that is done, calculate the frequencies of the four remaining colors. Assume these frequencies represent four alleles of a gene, and use the description of the H-W equilibrium for more than two alleles for assistance.
Using a different one of the following variables for each color frequency, write out the expected results of a quadrinomial expansion of the expression (p+q+r+t)².
Problem 43b
There are usually five or more colors of candy in each bag. Sort the candies by color, and if your bag has more than four colors, eat the least frequent color or colors. Once that is done, calculate the frequencies of the four remaining colors. Assume these frequencies represent four alleles of a gene, and use the description of the H-W equilibrium for more than two alleles for assistance.
Use this expansion to calculate the expected frequency of each possible genotype produced in a randomly mating population.