Problem 77a,c
In 2010, a team of scientists from Russia and the United States reported creation of the first atom of element 117, which is named tennessine, and whose symbol is Ts. The synthesis involved the collision of a target of 24997Bk with accelerated ions of an isotope which we will denote Q. The product atom, which we will call Z, immediately releases neutrons and forms 294117Ts: 24997Bk + Q → Z → 294117Ts + 3 10n (a) What are the identities of isotopes Q and Z? (c) Collision of ions of isotope Q with a target was also used to produce the first atoms of livermorium, Lv. The initial product of this collision was 296116Lv. What was the target isotope with which Q collided in this experiment?
Problem 77b
In 2010, a team of scientists from Russia and the United States reported creation of the first atom of element 117, which is named tennessine, and whose symbol is Ts. The synthesis involved the collision of a target of 24997Bk with accelerated ions of an isotope which we will denote Q. The product atom, which we will call Z, immediately releases neutrons and forms 294117Ts: 24997Bk + Q → Z → 294117Ts + 3 10n (b) Isotope Q is unusual in that it is very long-lived (its half-life is on the order of 1019 yr) in spite of having an unfavorable neutron-to-proton ratio (Figure 21.1). Can you propose a reason for its unusual stability?
- According to current regulations, the maximum permissible dose of strontium-90 in the body of an adult is 1 mCi (1 * 10^-3 Ci). Using the relationship rate = kN, calculate the number of atoms of strontium-90 to which this dose corresponds. To what mass of strontium-90 does this correspond? The half-life for strontium-90 is 28.8 years.
Problem 79
Problem 81a
Each of the following transmutations produces a radionuclide used in positron emission tomography (PET).
(a) In equations (i) and (ii), identify the species signified as 'X.'
(i) 14N(p,α)X
(ii) 18O(p,X)18F
(iii) 14N(d,n)15O
Problem 82
The nuclear masses of 7Be, 9Be, and 10Be are 7.0147, 9.0100, and 10.0113 amu, respectively. Which of these nuclei has the largest binding energy per nucleon?
- A 26.00-g sample of water containing tritium, ³¹H, emits 1.50 * 10³ beta particles per second. Tritium is a weak beta emitter with a half-life of 12.3 years. What fraction of all the hydrogen in the water sample is tritium?
Problem 83
- The average energy released in the fission of a single uranium-235 nucleus is about 3 * 10^-11 J. If the conversion of this energy to electricity in a nuclear power plant is 40% efficient, what mass of uranium-235 undergoes fission in a year in a plant that produces 1000 megawatts? Recall that a watt is 1 J/s.
Problem 85
- Tests on human subjects in Boston in 1965 and 1966, following the era of atomic bomb testing, revealed average quantities of about 2 pCi of plutonium radioactivity in the average person. How many disintegrations per second does this level of activity imply? If each alpha particle deposits 8 * 10^-13 J of energy and if the average person weighs 75 kg, calculate the number of rads and rems of radiation in 1 yr from such a level of plutonium.
Problem 86
- A 53.8-mg sample of sodium perchlorate contains radioactive chlorine-36 (whose atomic mass is 36.0 amu). If 29.6% of the chlorine atoms in the sample are chlorine-36 and the remainder are naturally occurring nonradioactive chlorine atoms, how many disintegrations per second are produced by this sample? The half-life of chlorine-36 is 3.0 * 105 yr.
Problem 87
- Naturally found uranium consists of 99.274% 238U, 0.720% 235U, and 0.006% 234U. As we have seen, 235U is the isotope that can undergo a nuclear chain reaction. Most of the 235U used in the first atomic bomb was obtained by gaseous diffusion of uranium hexafluoride, UF6(g). (a) What is the mass of UF6 in a 30.0-L vessel of UF6 at a pressure of 695 torr at 350 K? (b) What is the mass of 235U in the sample described in part (a)? (c) Now suppose that the UF6 is diffused through a porous barrier and that the change in the ratio of 238U and 235U in the diffused gas can be described by Equation 10.23. What is the mass of 235U in a sample of the diffused gas analogous to that in part (a)? (d) After one more cycle of gaseous diffusion, what is the percentage of 235UF6 in the sample?
Problem 88
- Charcoal samples from Stonehenge in England were burned in O2, and the resultant CO2 gas bubbled into a solution of Ca(OH)2 (limewater), resulting in the precipitation of CaCO3. The CaCO3 was removed by filtration and dried. A 788-mg sample of the CaCO3 had a radioactivity of 1.5 × 10^-2 Bq due to carbon-14. By comparison, living organisms undergo 15.3 disintegrations per minute per gram of carbon. Using the half-life of carbon-14, 5700 years, calculate the age of the charcoal sample.
Problem 90
Ch.21 - Nuclear Chemistry