Open QuestionIn Exercises 67-80, begin by graphing the square root function, f(x) = √x. Then use transformations of this graph to graph the given function. g(x) = 2√(x+1)
Open QuestionConsider the following nonlinear system. Work Exercises 75 –80 in order.y = | x - 1 |y = x^2 - 4How is the graph of y = x^2 - 4 obtained by transforming the graph of y = x^2?
Open QuestionIn Exercises 81–94, begin by graphing the absolute value function, f(x) = |x|. Then use transformations of this graph to graph the given function. h(x) = -|x+3|
Open QuestionIn Exercises 81–94, begin by graphing the absolute value function, f(x) = |x|. Then use transformations of this graph to graph the given function. g(x) = -|x + 4| +2
Open QuestionEach of the following graphs is obtained from the graph of ƒ(x)=|x| or g(x)=√x by applying several of the transformations discussed in this section. Describe the transformations and give an equation for the graph.
Open QuestionIn Exercises 95-106, begin by graphing the standard cubic function, f(x) = x³. Then use transformations of this graph to graph the given function. h(x) = x³/2
Open QuestionIn Exercises 95-106, begin by graphing the standard cubic function, f(x) = x³. Then use transformations of this graph to graph the given function. h(x) = (1/2)(x − 2)³ – 1
Open QuestionWork each problem. Find a function g(x)=ax+b whose graph can be obtained by translating the graph of ƒ(x)=2x+5 up 2 units and to the left 3 units.
Open QuestionIn Exercises 107-118, begin by graphing the cube root function, f(x) = ∛x. Then use transformations of this graph to graph the given function. -∛(x+2)
Open QuestionIn Exercises 107-118, begin by graphing the cube root function, f(x) = ∛x. Then use transformations of this graph to graph the given function. ∛(-x+2)