Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Use the definition of a derivative, to find the derivative of the function g(x)=x3 at x=−1.
A
0
B
-1
C
-3
D
3
Verified step by step guidance
1
Start with the definition of the derivative: \( g'(x) = \lim_{h \to 0} \frac{g(x+h) - g(x)}{h} \).
Substitute \( g(x) = x^3 \) into the definition: \( g'(x) = \lim_{h \to 0} \frac{(x+h)^3 - x^3}{h} \).
Expand \( (x+h)^3 \) using the binomial theorem: \( (x+h)^3 = x^3 + 3x^2h + 3xh^2 + h^3 \). Substitute this back into the equation: \( g'(x) = \lim_{h \to 0} \frac{x^3 + 3x^2h + 3xh^2 + h^3 - x^3}{h} \).
Simplify the numerator by canceling \( x^3 \): \( g'(x) = \lim_{h \to 0} \frac{3x^2h + 3xh^2 + h^3}{h} \). Factor \( h \) out of the numerator: \( g'(x) = \lim_{h \to 0} \frac{h(3x^2 + 3xh + h^2)}{h} \). Cancel \( h \) (for \( h \neq 0 \)): \( g'(x) = \lim_{h \to 0} (3x^2 + 3xh + h^2) \).
Evaluate the limit as \( h \to 0 \): \( g'(x) = 3x^2 \). To find the derivative at \( x = -1 \), substitute \( x = -1 \) into \( g'(x) = 3x^2 \): \( g'(-1) = 3(-1)^2 \).