Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Evaluate each expression. sec(3π)
A
21
B
2
C
23
D
223
Verified step by step guidance
1
Understand that secant, \( \sec(\theta) \), is the reciprocal of cosine, \( \cos(\theta) \). Therefore, \( \sec\left(\frac{\pi}{3}\right) = \frac{1}{\cos\left(\frac{\pi}{3}\right)} \).
Recall the value of \( \cos\left(\frac{\pi}{3}\right) \). From the unit circle or trigonometric tables, \( \cos\left(\frac{\pi}{3}\right) = \frac{1}{2} \).
Substitute the value of \( \cos\left(\frac{\pi}{3}\right) \) into the secant expression: \( \sec\left(\frac{\pi}{3}\right) = \frac{1}{\frac{1}{2}} \).
Simplify the expression \( \frac{1}{\frac{1}{2}} \) to find the value of \( \sec\left(\frac{\pi}{3}\right) \).
Conclude that the simplified value of \( \sec\left(\frac{\pi}{3}\right) \) is 2.