Problem 40a
An aerosol spray can with a volume of 125 mL contains 1.30 g of propane gas (C3H8) as a propellant. (a) If the can is at 25 °C, what is the pressure in the can?
Problem 40c
An aerosol spray can with a volume of 125 mL contains 1.30 g of propane gas (C3H8) as a propellant. (c) The can's label says that exposure to temperatures above 50 °C may cause the can to burst. What is the pressure in the can at this temperature?
- A 50.0 g sample of solid CO2 (dry ice) is added at -100 °C to an evacuated (all of the gas removed) container with a volume of 5.0 L. If the container is sealed and then allowed to warm to room temperature 125 °C2 so that the entire solid CO2 is converted to a gas, what is the pressure inside the container?
Problem 41
- A 334-mL cylinder for use in chemistry lectures contains 5.225 g of helium at 23 °C. How many grams of helium must be released to reduce the pressure to 7.60 MPa assuming ideal gas behavior?
Problem 42
Problem 43b
Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl2 gas is 8.70 L at 119.3 kPa and 24 °C. (b) What volume will the Cl2 occupy at STP?
Problem 43c
Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl2 gas is 8.70 L at 119.3 kPa and 24 °C. (c) At what temperature will the volume be 15.00 L if the pressure is 116.8 kPa
Problem 43d
Chlorine is widely used to purify municipal water supplies and to treat swimming pool waters. Suppose that the volume of a particular sample of Cl2 gas is 8.70 L at 119.3 kPa and 24 °C. (d) At what pressure will the volume equal 5.00 L if the temperature is 58 °C?
Problem 44a
Many gases are shipped in high-pressure containers. Consider a steel tank whose volume is 210.0 L that contains O2 gas at a pressure of 16,500 kPa at 23 °C. (a) What mass of O2 does the tank contain?
Problem 44b
Many gases are shipped in high-pressure containers. Consider a steel tank whose volume is 210.0 L that contains O2 gas at a pressure of 16,500 kPa at 23 °C. (b) What volume would the gas occupy at STP?
Problem 44c
Many gases are shipped in high-pressure containers. Consider a steel tank whose volume is 210.0 L that contains O2 gas at a pressure of 16,500 kPa at 23 °C. (c) At what temperature would the pressure in the tank equal 15.2 MPa?
Problem 44d
Many gases are shipped in high-pressure containers. Consider a steel tank whose volume is 210.0 L that contains O2 gas at a pressure of 16,500 kPa at 23 °C. (d) What would be the pressure of the gas, in kPa, if it were transferred to a container at 24 °C whose volume is 55.0 L?
- In an experiment reported in the scientific literature, male cockroaches were made to run at different speeds on a miniature treadmill while their oxygen consumption was measured. In 30 minutes, the average cockroach (running at 0.08 km/h) consumed 1.0 mL of O2 at 101.33 kPa pressure and 20 °C per gram of insect mass. (b) This same cockroach is caught by a child and placed in a 2.0-L fruit jar with a tight lid. Assuming the same level of continuous activity as in the research, how much of the available O2 will the cockroach consume in 1 day? (Air is 21 mol % O2.)
Problem 45
Problem 45a
In an experiment reported in the scientific literature, male cockroaches were made to run at different speeds on a miniature treadmill while their oxygen consumption was measured. In 30 minutes the average cockroach (running at 0.08 km/h) consumed 1.0 mL of O2 at 101.33 kPa pressure and 20 °C per gram of insect mass. (a) How many moles of O2 would be consumed in 1 day by a 6.3-g cockroach moving at this speed?
Problem 46a
The physical fitness of athletes is measured by 'VO2 max,' which is the maximum volume of oxygen consumed by an individual during incremental exercise (for example, on a treadmill). An average male has a VO2 max of 45 mL O2/kg body mass/min, but a world-class male athlete can have a VO2 max reading of 88.0 mL O2/kg body mass/min. (a) Calculate the volume of oxygen, in mL, consumed in 1 hr by an average man who weighs 85 kg and has a VO2 max reading of 47.5 mL O2/kg body mass/min. (b) If this man lost 10 kg, exercised, and increased his VO2 max to 65.0 mL O2/kg body mass/min, how many mL of oxygen would he consume in 1 hr?
- Rank the following gases from least dense to most dense at 101.33 kPa and 298 K: O2, Ar, NH3, HCl.
Problem 47
- Rank the following gases and vapors from least dense to most dense at 101.33 kPa and 298 K: water vapor 1H2O1g22, nitrogen 1N22, hydrogen sulfide 1H2S2.
Problem 48
Problem 49
Which of the following statements best explains why a closed balloon filled with helium gas rises in air? (a) Helium is a monatomic gas, whereas nearly all the molecules that make up air, such as nitrogen and oxygen, are diatomic. (b) The average speed of helium atoms is greater than the average speed of air molecules, and the greater speed of collisions with the balloon walls propels the balloon upward. (c) Because the helium atoms are of lower mass than the average air molecule, the helium gas is less dense than air. The mass of the balloon is thus less than the mass of the air displaced by its volume. (d) Because helium has a lower molar mass than the average air molecule, the helium atoms are in faster motion. This means that the temperature of the helium is greater than the air temperature. Hot gases tend to rise.
Problem 51a
(a) Calculate the density of NO2 gas at 0.970 atm and 35 °C.
Problem 51b
(b) Calculate the molar mass of a gas if 2.50 g occupies 0.875 L at 685 torr and 35 °C
- (b) Calculate the molar mass of a vapor that has a density of 7.135 g>L at 12 °C and 99.06 kPa.
Problem 52
- In the Dumas-bulb technique for determining the molar mass of an unknown liquid, you vaporize the sample of a liquid that boils below 100 °C in a boiling-water bath and determine the mass of vapor required to fill the bulb. From the following data, calculate the molar mass of the unknown liquid: mass of unknown vapor, 1.012 g; volume of bulb, 354 cm3; pressure, 98.93 kPa; temperature, 99 °C.
Problem 53
- The molar mass of a volatile substance was determined by the Dumas-bulb method described in Exercise 10.53. The unknown vapor had a mass of 2.55 g; the volume of the bulb was 500 mL, pressure 101.33 kPa, and temperature 37 °C.Calculate the molar mass of the unknown vapor.
Problem 54
- Magnesium can be used as a 'getter' in evacuated enclosures to react with the last traces of oxygen. (The magnesium is usually heated by passing an electric current through a wire or ribbon of the metal.) If an enclosure of 5.67 L has a partial pressure of O2 of 7.066 mPa at 30 °C, what mass of magnesium will react according to the following equation? 2 Mg1s2 + O21g2¡2 MgO1s2
Problem 55
- Calcium hydride, CaH2, reacts with water to form hydrogen gas: CaH21s2 + 2 H2O1l2¡Ca1OH221aq2 + 2 H21g2 This reaction is sometimes used to inflate life rafts, weather balloons, and the like, when a simple, compact means of generating H2 is desired. How many grams of CaH2 are needed to generate 145 L of H2 gas if the pressure of H2 is 110 kPa at 21 °C?
Problem 56
- The metabolic oxidation of glucose, C6H12O6, in our bodies produces CO2, which is expelled from our lungs as a gas: C6H12O6(aq) + 6 O2(g) → 6 CO2(g) + 6 H2O(l). (a) Calculate the volume of dry CO2 produced at normal body temperature, 37 °C, and 101.33 kPa when 10.0 g of glucose is consumed in this reaction. (b) Calculate the volume of oxygen you would need, at 100 kPa and 298 K, to completely oxidize 15.0 g of glucose.
Problem 57
Problem 58
Both Jacques Charles and Joseph Louis Guy-Lussac were avid balloonists. In his original flight in 1783, Jacques Charles used a balloon that contained approximately 31,150 L of H2. He generated the H2 using the reaction between iron and hydrochloric acid: Fe1s2 + 2 HCl1aq2 ¡ FeCl21aq2 + H21g2 How many kilograms of iron were needed to produce this volume of H2 if the temperature was 22 °C?
- During a person's typical breathing cycle, the CO2 concentration in the expired air rises to a peak of 4.6% by volume. (a) Calculate the partial pressure of the CO2 in the expired air at its peak, assuming 1 atm pressure and a body temperature of 37 °C.
Problem 59
- Acetylene gas, C2H21g2, can be prepared by the reaction of calcium carbide with water: CaC21s2 + 2 H2O1l2¡Ca1OH221aq2 + C2H21g2 Calculate the volume of C2H2 that is collected over water at 23 °C by reaction of 1.524 g of CaC2 if the total pressure of the gas is 100.4 kPa. (The vapor pressure of water is tabulated in Appendix B.)
Problem 60
Problem 61a1
Consider the apparatus shown in the following drawing. (a) When the valve between the two containers is opened and the gases are allowed to mix, how does the volume occupied by the N2 gas change?
Problem 61a2
Consider the apparatus shown in the following drawing. (a) When the valve between the two containers is opened and the gases are allowed to mix, what is the partial pressure of N2 after mixing?
Ch.10 - Gases