{Use of Tech} Newton’s method Use Newton’s method to approximate the roots of ƒ(x) = e⁻²ˣ + 2eˣ - 6 to six digits.
4. Applications of Derivatives
Differentials
- Textbook Question
- Textbook Question
For each function ƒ and interval [a, b], a graph of ƒ is given along with the secant line that passes though the graph of ƒ at x = a and x = b.
a. Use the graph to make a conjecture about the value(s) of c satisfying the equation (ƒ(b) - ƒ(a)) / (b-a) = ƒ' (c) .
b. Verify your answer to part (a) by solving the equation (ƒ(b) - ƒ(a)) / (b-a) = ƒ' (c) for c.
ƒ(x) = x⁵/16 ; [-2, 2] <IMAGE>
- Textbook Question
Given a function f that is differentiable on its domain, write and explain the relationship between the differentials dx and dy.
- Textbook Question
b. Estimate a solution to the equation in the given interval using a root finder.
x=cos x; (0,π/2)
- Textbook Question
{Use of Tech} Write the formula for Newton’s method and use the given initial approximation to compute the approximations x₁ and x₂.
f(x) = x² - 6; x₀ = 3
- Textbook Question
{Use of Tech} Write the formula for Newton’s method and use the given initial approximation to compute the approximations x₁ and x₂.
f(x) = e⁻ˣ - x; x₀ = ln 2
- Textbook Question
{Use of Tech} Finding roots with Newton’s method For the given function f and initial approximation x₀, use Newton’s method to approximate a root of f. Stop calculating approximations when two successive approximations agree to five digits to the right of the decimal point after rounding. Show your work by making a table similar to that in Example 1.
f(x) = x² - 10; x₀ = 3
- Textbook Question
{Use of Tech} Finding roots with Newton’s method For the given function f and initial approximation x₀, use Newton’s method to approximate a root of f. Stop calculating approximations when two successive approximations agree to five digits to the right of the decimal point after rounding. Show your work by making a table similar to that in Example 1.
f(x) = sin x + x - 1; x₀ = 0.5
- Textbook Question
{Use of Tech} Finding roots with Newton’s method For the given function f and initial approximation x₀, use Newton’s method to approximate a root of f. Stop calculating approximations when two successive approximations agree to five digits to the right of the decimal point after rounding. Show your work by making a table similar to that in Example 1.
f(x) = tan x - 2x; x₀ = 1.2
- Textbook Question
{Use of Tech} Finding roots with Newton’s method For the given function f and initial approximation x₀, use Newton’s method to approximate a root of f. Stop calculating approximations when two successive approximations agree to five digits to the right of the decimal point after rounding. Show your work by making a table similar to that in Example 1.
f(x) = cos⁻¹ x - x; x₀ = 0.75
- Textbook Question
{Use of Tech} Finding all roots Use Newton’s method to find all the roots of the following functions. Use preliminary analysis and graphing to determine good initial approximations.
f(x) = cos 2x - x² + 2x
- Textbook Question
A graph of ƒ and the lines tangent to ƒ at x = 1, 2 and 3 are given. If x₀ = 3, find the values of x₁, x₂, and x₃, that are obtained by applying Newton’s method. <IMAGE>
- Textbook Question
Let ƒ(x) = 2x³ - 6x² + 4x. Use Newton’s method to find x₁ given that x₀ = 1.4. Use the graph of f (see figure) and an appropriate tangent line to illustrate how x₁ is obtained from x₀ . <IMAGE>
- Textbook Question
{Use of Tech} Finding all roots Use Newton’s method to find all the roots of the following functions. Use preliminary analysis and graphing to determine good initial approximations.
f(x) = e⁻ˣ - ((x + 4)/5)
- Textbook Question
{Use of Tech} Finding intersection points Use Newton’s method to approximate all the intersection points of the following pairs of curves. Some preliminary graphing or analysis may help in choosing good initial approximations.
y = sin x and y = x/2