Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Evaluate the following integral: ∫23x25dx
A
19.360
B
16.594
C
10.129
D
11.817
Verified step by step guidance
1
Rewrite the integral in a more readable form: \( \int_2^3 x^{\frac{5}{2}} \, dx \). This represents the definite integral of \( x^{\frac{5}{2}} \) from 2 to 3.
Apply the power rule for integration: \( \int x^n \, dx = \frac{x^{n+1}}{n+1} + C \), where \( n \neq -1 \). Here, \( n = \frac{5}{2} \).
Using the power rule, the antiderivative of \( x^{\frac{5}{2}} \) is \( \frac{x^{\frac{5}{2} + 1}}{\frac{5}{2} + 1} = \frac{x^{\frac{7}{2}}}{\frac{7}{2}} = \frac{2}{7} x^{\frac{7}{2}} \).
Evaluate the definite integral by substituting the upper and lower limits (3 and 2) into the antiderivative: \( \left[ \frac{2}{7} x^{\frac{7}{2}} \right]_2^3 = \frac{2}{7} (3^{\frac{7}{2}}) - \frac{2}{7} (2^{\frac{7}{2}}) \).
Simplify the expression \( \frac{2}{7} (3^{\frac{7}{2}}) - \frac{2}{7} (2^{\frac{7}{2}}) \) to find the final value of the definite integral.