Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Write the expression in terms of the appropriate cofunction. cos(4519π)
A
cos(907π)
B
sin(454031π)
C
sin(907π)
D
cos(904031π)
Verified step by step guidance
1
Identify the cofunction identities: The cofunction identities relate sine and cosine functions. Specifically, \( \cos(\theta) = \sin\left(\frac{\pi}{2} - \theta\right) \) and \( \sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right) \).
Convert the angle in the cosine expression \( \cos\left(\frac{19\pi}{45}\right) \) to its cofunction: Use the identity \( \cos(\theta) = \sin\left(\frac{\pi}{2} - \theta\right) \). Calculate \( \frac{\pi}{2} - \frac{19\pi}{45} \).
Simplify the expression \( \frac{\pi}{2} - \frac{19\pi}{45} \): Find a common denominator to combine the fractions, which is 90. This gives \( \frac{45\pi}{90} - \frac{38\pi}{90} = \frac{7\pi}{90} \).
Apply the cofunction identity to the sine expression \( \sin\left(\frac{4031\pi}{45}\right) \): Use the identity \( \sin(\theta) = \cos\left(\frac{\pi}{2} - \theta\right) \). Calculate \( \frac{\pi}{2} - \frac{4031\pi}{45} \).
Simplify the expression \( \frac{\pi}{2} - \frac{4031\pi}{45} \): Again, find a common denominator, which is 90. This gives \( \frac{45\pi}{90} - \frac{8062\pi}{90} = -\frac{8017\pi}{90} \). Since cosine is an even function, \( \cos(-\theta) = \cos(\theta) \), so the expression becomes \( \cos\left(\frac{4031\pi}{90}\right) \).