Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Simplify the expression. sec(−θ)tan(−θ)
A
sinθ
B
−sinθ
C
−cotθ
D
1
Verified step by step guidance
1
Recognize that \( \tan(-\theta) = -\tan(\theta) \) and \( \sec(-\theta) = \sec(\theta) \) due to the even-odd properties of trigonometric functions.
Substitute these identities into the expression: \( \frac{\tan(-\theta)}{\sec(-\theta)} \sec(-\theta) \tan(-\theta) \). This becomes \( \frac{-\tan(\theta)}{\sec(\theta)} \sec(\theta) (-\tan(\theta)) \).
Simplify the expression by canceling out \( \sec(\theta) \) in the numerator and denominator: \( -\tan(\theta) \cdot (-\tan(\theta)) \).
Recognize that \( \tan(\theta) = \frac{\sin(\theta)}{\cos(\theta)} \), so \( -\tan(\theta) \cdot (-\tan(\theta)) = \left(\frac{\sin(\theta)}{\cos(\theta)}\right)^2 \).