Open QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal.v = 3i, w = -4i
Open QuestionIn Exercises 23–32, use the dot product to determine whether v and w are orthogonal.v = 3i, w = -4j
Open QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w.v = 3i - 2j, w = i - j
Open QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w.v = i + 3j, w = -2i + 5j
Open QuestionIn Exercises 33–38, find projᵥᵥ v. Then decompose v into two vectors, v₁ and v₂, where v₁ is parallel to w and v₂ is orthogonal to w.v = i + 2j, w = 3i + 6j
Open QuestionIn Exercises 37–39, find the dot product v ⋅ w. Then find the angle between v and w to the nearest tenth of a degree.v = 2i + 4j, w = 6i - 11j
Open QuestionIn Exercises 39–42, letu = -i + j, v = 3i - 2j, and w = -5j.Find each specified scalar or vector.5u ⋅ (3v - 4w)
Open QuestionIn Exercises 40–41, use the dot product to determine whether v and w are orthogonal.v = 12i - 8j, w = 2i + 3j