Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
If a vector has magnitude ∣v⃗∣=5 and direction θ=47π, find the vector’s horizontal and vertical components.
A
vx=4.98 and vy=0.479
B
vx=0.479 and vy=4.98
C
vx=−3.54 and vy=3.54
D
vx=3.54 and vy=−3.54
Verified step by step guidance
1
To find the horizontal and vertical components of a vector given its magnitude and direction, we use the formulas: \( v_x = |\vec{v}| \cos(\theta) \) and \( v_y = |\vec{v}| \sin(\theta) \).
Substitute the given magnitude \( |\vec{v}| = 5 \) and direction \( \theta = \frac{7\pi}{4} \) into the formulas.
Calculate the horizontal component: \( v_x = 5 \cos\left(\frac{7\pi}{4}\right) \).
Calculate the vertical component: \( v_y = 5 \sin\left(\frac{7\pi}{4}\right) \).
Evaluate the trigonometric functions: \( \cos\left(\frac{7\pi}{4}\right) \) and \( \sin\left(\frac{7\pi}{4}\right) \) to find the exact values of \( v_x \) and \( v_y \).