Table of contents
- 0. Review of College Algebra4h 43m
- 1. Measuring Angles40m
- 2. Trigonometric Functions on Right Triangles2h 5m
- 3. Unit Circle1h 19m
- 4. Graphing Trigonometric Functions1h 19m
- 5. Inverse Trigonometric Functions and Basic Trigonometric Equations1h 41m
- 6. Trigonometric Identities and More Equations2h 34m
- 7. Non-Right Triangles1h 38m
- 8. Vectors2h 25m
- 9. Polar Equations2h 5m
- 10. Parametric Equations1h 6m
- 11. Graphing Complex Numbers1h 7m
7. Non-Right Triangles
Area of SAS & ASA Triangles
Struggling with Trigonometry?
Join thousands of students who trust us to help them ace their exams!Watch the first videoMultiple Choice
Find the area of the triangle: A=30°, b=10m, B=80°.
A
44.8m2
B
11.9m2
C
26.2m2
D
23.9m2

1
Identify the given values: angle A = 30°, angle B = 80°, and side b = 10 m.
Use the angle sum property of triangles to find angle C: C = 180° - A - B.
Apply the Law of Sines to find side a: \( \frac{a}{\sin A} = \frac{b}{\sin B} \). Rearrange to solve for a: \( a = b \cdot \frac{\sin A}{\sin B} \).
Use the formula for the area of a triangle: \( \text{Area} = \frac{1}{2} \cdot a \cdot b \cdot \sin C \).
Substitute the values of a, b, and \( \sin C \) into the area formula to find the area of the triangle.
Watch next
Master Calculating Area of SAS Triangles with a bite sized video explanation from Patrick
Start learningRelated Videos
0
Area of SAS & ASA Triangles practice set
