Open QuestionDetermine the different possibilities for the numbers of positive, negative, and nonreal complex zeros of each function. See Example 7. ƒ(x)=3x^3+6x^2+x+7
Open QuestionDetermine the different possibilities for the numbers of positive, negative, and nonreal complex zeros of each function. See Example 7. ƒ(x)=x^5+3x^4-x^3+2x+3
Open QuestionDetermine the different possibilities for the numbers of positive, negative, and nonreal complex zeros of each function. See Example 7. ƒ(x)=9x^6-7x^4+8x^2+x+6
Open QuestionDetermine the different possibilities for the numbers of positive, negative, and nonreal complex zeros of each function. See Example 7. ƒ(x)=7x^5+6x^4+2x^3+9x^2+x+5
Open QuestionDetermine whether each statement is true or false. If false, explain why. Because x-1 is a factor of ƒ(x)=x^6-x^4+2x^2-2, we can also conclude that ƒ(1)=0
Open QuestionIn Exercises 1–8, use the Rational Zero Theorem to list all possible rational zeros for each given function. f(x)=3x^4−11x^3−x^2+19x+6
Open QuestionUse the factor theorem and synthetic division to determine whether the second polynomial is a factor of the first. See Example 1. x^3-5x^2+3x+1; x-1
Open QuestionIn Exercises 9–16, a) List all possible rational zeros. b) Use synthetic division to test the possible rational zeros and find an actual zero. c) Use the quotient from part (b) to find the remaining zeros of the polynomial function. f(x)=2x^3−3x^2−11x+6