Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Given z1=32(cos25°+isin25°) and z2=25(cos15°+isin15°), find the product z1・z2.
A
z1・z2=35CiS(375°)
B
z1・z2=CiS(40°)
C
z1・z2=619CiS(40°)
D
z1・z2=619CiS(375°)
Verified step by step guidance
1
Identify the given complex numbers in polar form: z1 = (2/3)(cos(25°) + i*sin(25°)) and z2 = (5/2)(cos(15°) + i*sin(15°)).
Recall the formula for multiplying two complex numbers in polar form: If z1 = r1*(cos(θ1) + i*sin(θ1)) and z2 = r2*(cos(θ2) + i*sin(θ2)), then z1 * z2 = (r1 * r2)(cos(θ1 + θ2) + i*sin(θ1 + θ2)).
Calculate the product of the magnitudes: r1 * r2 = (2/3) * (5/2).
Add the angles: θ1 + θ2 = 25° + 15°.
Express the product z1 * z2 in polar form using the calculated magnitude and angle: z1 * z2 = (r1 * r2)(cos(θ1 + θ2) + i*sin(θ1 + θ2)).