Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Given z1=51(cos2π+isin2π) and z2=5(cos5π+isin5π), find the quotient z2z1.
A
z2z1=251CiS(103π)
B
z2z1=251CiS(25π)
C
z2z1=−524CiS(103π)
D
z2z1=−524CiS(25)
Verified step by step guidance
1
Identify the given complex numbers in polar form: z1 = \frac{1}{5}(\cos\frac{\pi}{2} + i\sin\frac{\pi}{2}) and z2 = 5(\cos\frac{\pi}{5} + i\sin\frac{\pi}{5}).
Recall the formula for dividing two complex numbers in polar form: \frac{z_1}{z_2} = \frac{r_1}{r_2} \text{CiS}(\theta_1 - \theta_2), where CiS(\theta) = \cos(\theta) + i\sin(\theta).
Calculate the magnitudes: \frac{r_1}{r_2} = \frac{\frac{1}{5}}{5} = \frac{1}{25}.
Subtract the angles: \theta_1 - \theta_2 = \frac{\pi}{2} - \frac{\pi}{5}.
Express the quotient in polar form: \frac{z_1}{z_2} = \frac{1}{25} \text{CiS}(\frac{\pi}{2} - \frac{\pi}{5}).