Problem 21b
The Hoxd9–13 genes are thought to specify digit identity. You wish to examine the effect of loss-of-function alleles in developing limbs. How would you construct a mouse in which the function of Hoxd9–13 is retained during anterior–posterior embryonic patterning but is absent from developing limbs?
Problem 22a
Three-spined stickleback fish live in lakes formed when the last ice age ended 10,000 to 15,000 years ago. In lakes where the sticklebacks are prey for larger fish, they develop 35 bony plates along their body as armor. In contrast, sticklebacks in lakes where there are no predators develop only a few or no bony plates. In crosses between fish of the two different morphologies, the lack of bony armor segregates as a recessive trait that maps to the ectodermal dysplasin (Eda) gene. Comparisons between the Eda-coding regions of the armored and nonarmored fish revealed no differences. How can you explain this result?
Problem 22b
Three-spined stickleback fish live in lakes formed when the last ice age ended 10,000 to 15,000 years ago. In lakes where the sticklebacks are prey for larger fish, they develop 35 bony plates along their body as armor. In contrast, sticklebacks in lakes where there are no predators develop only a few or no bony plates. Loss-of-function mutations in the coding region of the homologous gene in humans result in loss of hair, teeth, and sweat glands, as in the toothless men of Sind (India). What does this suggest about hair, teeth, and sweat glands in humans?
Problem 23
The flowering jungle plant Lacandonia schismatica, discovered in southern Mexico, has a unique floral structure. Petal-like organs are in the outer whorls surrounding a number of carpels, and stamens are in the center of the flower. Closely related species are dioecious; female plants bear flowers that resemble those of Lacandonia, but without the central stamens. What type of mutation could have resulted in the evolution of Lacandonia flowers?
Problem 24a
Homeotic genes are thought to regulate each other. What aspect of the phenotype of apetala2 agamous double mutants indicates that these two genes act antagonistically?
Problem 24b
Homeotic genes are thought to regulate each other. Are similar interactions observed between Hox genes?
Problem 25
Dipterans (two-winged insects) are thought to have evolved from a four-winged ancestor that had wings on both T2 and T3 thoracic segments, as in extant butterflies and dragonflies. Describe an evolutionary scenario for the evolution of dipterans from four-winged ancestors. What types of mutations could lead to a butterfly developing with only two wings?
Problem 26
Basidiomycota is a monophyletic group of fungi that includes most of the common mushrooms. You are interested in the development of the body plan of mushrooms. How would you identify the genes required for patterning during mushroom development?
Problem 27
Zea mays (maize, or corn) was originally domesticated in central Mexico at least 7000 years ago from an endemic grass called teosinte. Teosinte is generally unbranched, has male and female flowers on the same branch, and has few kernels per 'cob,' each encased in a hard, leaf-like organ called a glume. In contrast, maize is highly branched, with a male inflorescence (tassel) on its central branch and female inflorescences (cobs) on axillary branches. In addition, maize cobs have many rows of kernels and soft glumes. George Beadle crossed cultivated maize and wild teosinte, which resulted in fully fertile F₁ plants. When the F₁ plants were self-fertilized, about 1 plant in every 1000 of the F₂ progeny resembled either a modern maize plant or a wild teosinte plant. What did Beadle conclude about whether the different architectures of maize and teosinte were caused by changes with a small effect in many genes or changes with a large effect in just a few genes?
Problem 28
In C. elegans there are two sexes: hermaphrodite and male. Sex is determined by the ratio of X chromosomes to haploid sets of autosomes (X/A). An X/A ratio of 1.0 produces a hermaphrodite (XX), and an X/A ratio of 0.5 results in a male (XO). In the 1970s, Jonathan Hodgkin and Sydney Brenner carried out genetic screens to identify mutations in three genes that result in either XX males (tra-1, tra-2) or XO hermaphrodites (her-1). Double-mutant strains were constructed to assess for epistatic interactions between the genes (see table). Propose a genetic model of how the her and tra genes control sex determination.
Problem 29a
In Drosophila, recessive mutations in the fruitless gene (fru) result in males courting other males, and recessive mutations in the Antennapedia gene (Ant⁻) lead to defects in the body plan, specifically in the thoracic region of the body, where mutants fail to develop legs. The two genes map 15 cM apart on chromosome 3. You have isolated a new dominant Antdᵈ mutant allele that you induced by treating your flies with X-rays. Your new mutant has legs developing instead of antennae on the head of the fly. You cross your newly induced dominant Antᵈ mutant (a pure-breeding line) with a homozygous recessive fru mutant (which is homozygous wild type at the Ant⁺ locus), as diagrammed below:
What phenotypes, and in what proportions, do you expect in the F₂ obtained by interbreeding F₁ animals?
Problem 29b
In Drosophila, recessive mutations in the fruitless gene (fru) result in males courting other males, and recessive mutations in the Antennapedia gene (Ant⁻) lead to defects in the body plan, specifically in the thoracic region of the body, where mutants fail to develop legs. The two genes map 15 cM apart on chromosome 3. You have isolated a new dominant Antdᵈ mutant allele that you induced by treating your flies with X-rays. Your new mutant has legs developing instead of antennae on the head of the fly. You cross your newly induced dominant Antᵈ mutant (a pure-breeding line) with a homozygous recessive fru mutant (which is homozygous wild type at the Ant⁺ locus), as diagrammed below: Your cross results in the following phenotypic proportions:
Legs on head, normal courting behavior 75
Normal head, abnormal courting behavior 25
Legs on head, abnormal courting behavior 0
Normal head, normal courting behavior 0
Provide a genetic explanation for these results and describe a test for your hypothesis
Problem 29c
In Drosophila, recessive mutations in the fruitless gene (fru) result in males courting other males, and recessive mutations in the Antennapedia gene (Ant⁻) lead to defects in the body plan, specifically in the thoracic region of the body, where mutants fail to develop legs. The two genes map 15 cM apart on chromosome 3. You have isolated a new dominant Antdᵈ mutant allele that you induced by treating your flies with X-rays. Your new mutant has legs developing instead of antennae on the head of the fly. You cross your newly induced dominant Antᵈ mutant (a pure-breeding line) with a homozygous recessive fru mutant (which is homozygous wild type at the Ant⁺ locus), as diagrammed below:
Provide a molecular explanation for the reason your new Antᵈ mutant is dominant and for its novel phenotype.
Ch. 18 - Developmental Genetics