Problem 20b
A muscle enzyme called ME1 is produced by transcription and translation of the ME1 gene in several muscles during mouse development, including heart muscle, in a highly regulated manner. Production of ME1 appears to be turned on and turned off at different times during development. To test the possible role of enhancers and silencers in ME1 transcription, a biologist creates a recombinant genetic system that fuses the ME1 promoter, along with DNA that is upstream of the promoter, to the bacterial lacZ (β-galactosidase) gene. The lacZ gene is chosen for the ease and simplicity of assaying production of the encoded enzyme. The diagram shows bars that indicate the extent of six deletions the biologist makes to the ME1 promoter and upstream sequences. The blue deletion labeled D is within the promoter whereas the gray bars span potential enhancer/silencer modules. The table displays the percentage of β-galactosidase activity in each deletion mutant in comparison with the recombinant gene system without any deletions.
Why does deletion D effectively eliminate transcription of lacZ?
Problem 20c
A muscle enzyme called ME1 is produced by transcription and translation of the ME1 gene in several muscles during mouse development, including heart muscle, in a highly regulated manner. Production of ME1 appears to be turned on and turned off at different times during development. To test the possible role of enhancers and silencers in ME1 transcription, a biologist creates a recombinant genetic system that fuses the ME1 promoter, along with DNA that is upstream of the promoter, to the bacterial lacZ (β-galactosidase) gene. The lacZ gene is chosen for the ease and simplicity of assaying production of the encoded enzyme. The diagram shows bars that indicate the extent of six deletions the biologist makes to the ME1 promoter and upstream sequences. The blue deletion labeled D is within the promoter whereas the gray bars span potential enhancer/silencer modules. The table displays the percentage of β-galactosidase activity in each deletion mutant in comparison with the recombinant gene system without any deletions.
Given the information available from deletion analysis, can you give a molecular explanation for the observation that ME1 expression appears to turn on and turn off at various times during normal mouse development?
Problem 21a
Using the components in the accompanying diagram, design regulatory modules (i.e., enhancer/silencer modules) required for 'your' gene to be expressed only in differentiating (early) and differentiated (late) liver cells. Answer the three questions presented below by describing the roles that activators, enhancers, repressors, silencers, pioneer factors, insulators, chromatin remodeling complexes, and chromatin readers, writers, and erasers will play in the regulation of expression of your gene, that is, what factors will bind and be active in each case? Specify which transcription factors need to be pioneer factors. How will the gene be activated in the proper cell type?
Problem 21b
Using the components in the accompanying diagram, design regulatory modules (i.e., enhancer/silencer modules) required for 'your' gene to be expressed only in differentiating (early) and differentiated (late) liver cells. Answer the three questions presented below by describing the roles that activators, enhancers, repressors, silencers, pioneer factors, insulators, chromatin remodeling complexes, and chromatin readers, writers, and erasers will play in the regulation of expression of your gene, that is, what factors will bind and be active in each case? Specify which transcription factors need to be pioneer factors. How will its expression be maintained?
Problem 21c
Using the components in the accompanying diagram, design regulatory modules (i.e., enhancer/silencer modules) required for 'your' gene to be expressed only in differentiating (early) and differentiated (late) liver cells. Answer the three questions presented below by describing the roles that activators, enhancers, repressors, silencers, pioneer factors, insulators, chromatin remodeling complexes, and chromatin readers, writers, and erasers will play in the regulation of expression of your gene, that is, what factors will bind and be active in each case? Specify which transcription factors need to be pioneer factors. How will expression be prevented in other cell types?
Problem 22
The majority of this chapter focused on gene regulation at the transcriptional level, but the quantity of functional protein product in a cell can be regulated in many other ways as well. Discuss possible reasons why transcriptional regulation or posttranscriptional regulation may have evolved for different types of genes.
Problem 23
Microbiologists describe the processes of transcription and translation as 'coupled' in bacteria. This term indicates that a bacterial mRNA can be undergoing transcription at the same moment it is also undergoing translation. Is coupling of transcription and translation possible in single-celled eukaryotes such as yeast? Why or why not?
- The Drosophila even-skipped (eve) gene is expressed in seven stripes in the segmentation pattern of the embryo. A sequence segment of 8 kb 5' to the transcription start site (shown as in the accompanying figure) is required to drive expression of a reporter gene (lacZ) in the same pattern as the endogenous eve gene. Remarkably, expression of most of the seven stripes appears to be specified independently, with stripe 2 expression directed by regulatory sequences in the region 1.7 kb 5' to the transcription start site. To further examine stripe 2 regulatory sequences, you create a series of constructs, each containing different fragments of the 1.7-kb region of the 5' sequence. In the lower part of the figure, the bars at left represent the sequences of DNA included in your reporter gene constructs, and the + and − signs at right indicate whether the corresponding eve-lacZ reporter gene directs stripe 2 expression in Drosophila embryos transformed through P element mediation. How would you interpret the results—that is, where do the regulatory sequences responsible for stripe 2 expression reside?
Problem 27
Ch. 13 - Regulation of Gene Expression in Eukaryotes