Problem 92a
Use standard enthalpies of formation to calculate ΔH°rxn for each reaction. a. 2 H2S(g) + 3 O2(g) → 2 H2O(l) + 2 SO2(g)
Problem 92b
Use standard enthalpies of formation to calculate ΔH°rxn for each reaction. b. SO2(g) + 1/2 O2(g) → SO3(g)
Problem 92d
Use standard enthalpies of formation to calculate ΔH°rxn for each reaction. d. N2O4(g) + 4 H2(g) → N2(g) + 4 H2O(g)
Problem 93
During photosynthesis, plants use energy from sunlight to form glucose (C6H12O6) and oxygen from carbon dioxide and water. Write a balanced equation for photosynthesis.
Problem 94
Ethanol (C2H5OH) can be made from the fermentation of crops and has been used as a fuel additive to gasoline. Write a balanced equation for the combustion of ethanol and calculate ΔH°rxn.
Problem 95
Top fuel dragsters and funny cars burn nitromethane as fuel according to the balanced combustion equation: 2 CH3NO2(l) + 3/2O2(g) → 2 CO2(g) + 3 H2O(l) + N2(g) ΔH°rxn = –1418 kJ The enthalpy of combustion for nitromethane is –709.2 kJ/mol. Calculate the standard enthalpy of formation (ΔH°f ) for nitromethane.
Problem 96
The explosive nitroglycerin (C3H5N3O9) decomposes rapidly upon ignition or sudden impact according to the balanced equation: 4 C3H5N3O9(l) → 12 CO2(g) + 10 H2O(g) + 6 N2(g) + O2(g) ΔH°rxn = –5678 kJ Calculate the standard enthalpy of formation (ΔH°f ) for nitroglycerin.
Problem 97a
Determine the mass of CO2 produced by burning enough of each fuel to produce 1.00×102 kJ of heat. a. CH4(g) + 2 O2(g) → CO2(g) + 2 H2O(g) ΔH°rxn = –802.3 kJ
Problem 98
Methanol (CH3OH) has been suggested as a fuel to replace gasoline. Find ΔH°rxn, and determine the mass of carbon dioxide emitted per kJ of heat produced. Use the information from the previous exercise to calculate the same quantity for octane, C8H18. How does methanol compare to octane with respect to global warming?
- The citizens of the world burn the fossil fuel equivalent of 7 * 10^12 kg of petroleum per year. Assume that all of this petroleum is in the form of octane (C8H18) and calculate how much CO2 (in kg) the world produces from fossil fuel combustion per year. (Hint: Begin by writing a balanced equation for the combustion of octane.) If the atmosphere currently contains approximately 3 * 10^15 kg of CO2, how long will it take for the world’s fossil fuel combustion to double the amount of atmospheric carbon dioxide?
Problem 99
Problem 100
In a sunny location, sunlight has a power density of about 1 kW/m2. Photovoltaic solar cells can convert this power into electricity with 15% efficiency. If a typical home uses 385 kWh of electricity per month, how many square meters of solar cells are required to meet its energy requirements? Assume that electricity can be generated from the sunlight for 8 hours per day.
Problem 101b
The kinetic energy of a rolling billiard ball is given by KE = 1/2 mv2. Suppose a 0.17-kg billiard ball is rolling down a pool table with an initial speed of 4.5 m/s. As it travels, it loses some of its energy as heat. The ball slows down to 3.8 m/s and then collides head-on with a second billiard ball of equal mass. The first billiard ball completely stops and the second one rolls away with a velocity of 3.8 m/s. Assume the first billiard ball is the system. Calculate q.
- A 100-W lightbulb is placed in a cylinder equipped with a moveable piston. The lightbulb is turned on for 0.015 hour, and the assembly expands from an initial volume of 0.85 L to a final volume of 5.88 L against an external pressure of 1.0 atm. Use the wattage of the lightbulb and the time it is on to calculate ΔE in joules (assume that the cylinder and lightbulb assembly is the system and assume two significant figures). Calculate w. Calculate q.
Problem 102
Problem 104
LP gas burns according to the exothermic reaction: C3H8( g) + 5 O2( g)¡3 CO2( g) + 4 H2O( g) ΔH °rxn = -2044 kJ What mass of LP gas is necessary to heat 2.50 L of water from room temperature (25.0 °C) to boiling (100.0 °C)? Assume that during heating, 15% of the heat emitted by the LP gas combustion goes to heat the water. The rest is lost as heat to the surroundings. (Assume a density of 1.00 g/mL for water.)
Problem 107a
Use standard enthalpies of formation to calculate the standard change in enthalpy for the melting of ice. (The ΔH°f for H2O(s) is –291.8 kJ/mol.)
Problem 107b
Use standard enthalpies of formation to calculate the standard change in enthalpy for the melting of ice. (The ΔH°f for H2O(s) is –291.8 kJ/mol.) Use this value to calculate the mass of ice required to cool 355 mL of a beverage from room temperature (25.0 °C) to 0.0 °C. Assume that the specific heat capacity and density of the beverage are the same as those of water.
Problem 108
Dry ice is solid carbon dioxide. Instead of melting, solid carbon dioxide sublimes according to the equation: CO2(s) → CO2(g) ◀ When carbon dioxide sublimes, the gaseous CO2 is cold enough to cause water vapor in the air to condense, forming fog. When dry ice is added to warm water, heat from the water causes the dry ice to sublime more quickly. The evaporating carbon dioxide produces a dense fog often used to create special effects. In a simple dry ice fog machine, dry ice is added to warm water in a Styrofoam cooler. The dry ice produces fog until it evaporates away, or until the water gets too cold to sublime the dry ice quickly enough. Suppose that a small Styrofoam cooler holds 15.0 L of water heated to 85 °C. Use standard enthalpies of formation to calculate the change in enthalpy for dry ice sublimation, and calculate the mass of dry ice that should be added to the water so that the dry ice completely sublimes away when the water reaches 25 °C. Assume no heat loss to the surroundings. (The ΔH°f for CO2(s) is –427.4 kJ/mol.)
Problem 109
A 25.5-g aluminum block is warmed to 65.4 °C and plunged into an insulated beaker containing 55.2 g water initially at 22.2 °C. The aluminum and the water are allowed to come to thermal equilibrium. Assuming that no heat is lost, what is the final temperature of the water and aluminum?
Problem 111
If 50.0 mL of ethanol (density = 0.789 g/mL) initially at 7.0 °C is mixed with 50.0 mL of water (density = 1.0 g/mL) initially at 28.4 °C in an insulated beaker, and assuming that no heat is lost, what is the final temperature of the mixture?
- Calculate the caloric content of table sugar (sucrose, C12H22O11), given that the standard enthalpy of formation of sucrose is -2226.1 kJ/mol. For comparison, the standard enthalpy of formation of palmitic acid (C16H32O2), a dietary fat found in beef and butter, is -208 kJ/mol. Use H2O(l) in the balanced chemical equations, as the metabolism of these compounds produces liquid water.
Problem 111
Problem 111a
Palmitic acid (C16H32O2) is a dietary fat found in beef and butter. The caloric content of palmitic acid is typical of fats in general. Write a balanced equation for the complete combustion of palmitic acid and calculate the standard enthalpy of combustion. What is the caloric content of palmitic acid in Cal/g? The standard enthalpy of formation of palmitic acid is -208 kJ/mol and that of sucrose is -2226.1 kJ/mol. [Use H2O(l) in the balanced chemical equations because the metabolism of these compounds produces liquid water.]
Problem 111b
Palmitic acid (C16H32O2) is a dietary fat found in beef and butter. The caloric content of palmitic acid is typical of fats in general. Which dietary substance (sugar or fat) contains more Calories per gram? The standard enthalpy of formation of palmitic acid is -208 kJ/mol and that of sucrose is -2226.1 kJ/mol. [Use H2O(l) in the balanced chemical equations because the metabolism of these compounds produces liquid water.]
- Hydrogen and methanol have both been proposed as alternatives to hydrocarbon fuels. Use standard enthalpies of formation to calculate the amount of heat released per kilogram of methanol fuel and per kilogram of hydrogen fuel.
Problem 112
Problem 112b
Hydrogen and methanol have both been proposed as alternatives to hydrocarbon fuels. Which fuel contains the most energy in the least mass?
Problem 112c
Hydrogen and methanol have both been proposed as alternatives to hydrocarbon fuels. How does the energy of these fuels compare to that of octane (C8H18)?
Problem 114
Under certain nonstandard conditions, oxidation by O2(g) of 1 mol of SO2(g) to SO3(g) absorbs 89.5 kJ. The enthalpy of formation of SO3(g) is –204.2 kJ under these conditions. Find the enthalpy of formation of SO2(g).
- One tablespoon of peanut butter has a mass of 16 g. It is combusted in a calorimeter whose heat capacity is 120.0 kJ/°C. The temperature of the calorimeter rises from 22.2 °C to 25.4 °C. Find the food caloric content of peanut butter.
Problem 115
Problem 116
A mixture of 2.0 mol of H2(g) and 1.0 mol of O2(g) is placed in a sealed evacuated container made of a perfect insulating material at 25 °C. The mixture is ignited with a spark and reacts to form liquid water. Determine the temperature of the water.
Problem 119d
A 20.0-L volume of an ideal gas in a cylinder with a piston is at a pressure of 3.0 atm. Enough weight is suddenly removed from the piston to lower the external pressure to 1.5 atm. The gas then expands at constant temperature until its pressure is 1.5 atm. Find w.
Problem 120
When 10.00 g of phosphorus is burned in O2(g) to form P4O10(s), enough heat is generated to raise the temperature of 2950 g of water from 18.0 °C to 38.0 °C. Calculate the enthalpy of formation of P4O10(s) under these conditions.
Ch.7 - Thermochemistry