- Should you carry out a chemical reaction under conditions of constant volume or constant pressure to obtain the largest possible amount of heat, if there is a large increase in the number of moles of gas? Explain.
Problem 72
Problem 73
When 0.514 g of biphenyl (C12H10) undergoes combustion in a bomb calorimeter, the temperature rises from 25.8 °C to 29.4 °C. Find ΔErxn for the combustion of biphenyl in kJ/mol biphenyl. The heat capacity of the bomb calorimeter, determined in a separate experiment, is 5.86 kJ/°C.
Problem 75
Zinc metal reacts with hydrochloric acid according to the balanced equation: Zn(s) + 2 HCl(aq) → ZnCl2(aq) + H2(g) When 0.103 g of Zn(s) is combined with enough HCl to make 50.0 mL of solution in a coffee-cup calorimeter, all of the zinc reacts, raising the temperature of the solution from 22.5 °C to 23.7 °C. Find ΔHrxn for this reaction as written. (Use 1.0 g/mL for the density of the solution and 4.18 J/g•°C as the specific heat capacity.)
Problem 75b
Determine whether each process is exothermic or endothermic and indicate the sign of ΔH. a. natural gas burning on a stove b. isopropyl alcohol evaporating from skin c. water condensing from steam Indicate the sign of ΔH for the following processes.
Problem 76
Instant cold packs used to ice athletic injuries on the field contain ammonium nitrate and water separated by a thin plastic divider. When the divider is broken, the ammonium nitrate dissolves according to the endothermic reaction: NH4NO3(s) → NH4+(aq) + NO3– (aq) In order to measure the enthalpy change for this reaction, 1.25 g of NH4NO3 is dissolved in enough water to make 25.0 mL of solution. The initial temperature is 25.8 °C and the final temperature (after the solid dissolves) is 21.9 °C. Calculate the change in enthalpy for the reaction in kJ. (Use 1.0 g/mL as the density of the solution and 4.18 J/g•°C as the specific heat capacity.)
Problem 77a
For each generic reaction, determine the value of ΔH2 in terms of ΔH1.
a. A + B → 2 C ΔH1
2 C→ A + B ΔH2 = ?
Problem 77b
For each generic reaction, determine the value of ΔH2 in terms of ΔH1.
b. A + 1/2 B → C ΔH1
2 A + B → 2 C ΔH2 = ?
Problem 77c
For each generic reaction, determine the value of ΔH2 in terms of ΔH1.
c. A → B + 2 C ΔH1
1/2 B + C → 1/2 A ΔH2 = ?
Problem 78
Consider the generic reaction:
A + 2 B → C + 3 D ΔH = 155 kJ
Determine the value of ΔH for each related reaction.
a. 3 A + 6 B → 3 C + 9 D
b. C + 3 D → A + 2 B
c. 1/2 C + 3/2 D → 1/2 A + B
Problem 79
Calculate ΔHrxn for the reaction:
Fe2O3(s) + 3 CO(g) → 2 Fe(s) + 3 CO2(g)
Use the following reactions and given ΔH's:
2 Fe(s) + 3/2 O2(g) → Fe2O3(s) ΔH = –824.2 kJ
CO(g) + 1/2 O2(g) → CO2(g) ΔH = –282.7 kJ
Problem 80
Calculate ΔHrxn for the reaction:
CaO(s) + CO2(g) → CaCO3(s)
Use the following reactions and given ΔH's:
Ca(s) + CO2(g) + 1/2 O2(g) → CaCO3(s) ΔH = –812.8 kJ
2 Ca(s) + O2(g) → 2 CaO(s) ΔH = –1269.8 kJ
Problem 81
Calculate ΔHrxn for the reaction:
5 C(s) + 6 H2(g) → C5H12(l)
Use the following reactions and given ΔH's:
C5H12(l) + 8 O2(g) → 5 CO2(g) + 6 H2O(g) ΔH = –3244.8 kJ
C(s) + O2(g) → CO2(g) ΔH = –393.5 kJ
2 H2(g) + O2(g) → 2 H2O(g) ΔH = –483.5 kJ
Problem 82
Calculate ΔHrxn for the reaction:
CH4(g) + 4 Cl2(g) → CCl4(g) + 4 HCl(g)
Use the following reactions and given ΔH's:
C(s) + 2 H2(g) → CH4(g) ΔH = –74.6 kJ
C(s) + 2 Cl2(g) → CCl4( g) ΔH = –95.7 kJ
H2(g) + Cl2(g) → 2 HCl( g) ΔH = –92.3 kJ
Problem 83a
Write an equation for the formation of each compound from its elements in their standard states, and find ΔH °f for each in Appendix IIB. a. NH3(g)
Problem 84a
Write an equation for the formation of each compound from its elements in their standard states, and find ΔH°rxn for each in Appendix IIB. a. NO2(g)
Problem 84b
Write an equation for the formation of each compound from its elements in their standard states, and find ΔH°rxn for each in Appendix IIB. b. MgCO3(s)
Problem 84d
Write an equation for the formation of each compound from its elements in their standard states, and find ΔH°rxn for each in Appendix IIB. d. CH3OH(l)
Problem 85
Hydrazine (N2H4) is a fuel used by some spacecraft. It is normally oxidized by N2O4 according to the equation: N2H4 (l) + N2O4 (g) → 2 N2O (g) + 2 H2O (g) Calculate ΔH°rxn for this reaction using standard enthalpies of formation.
Problem 86
Pentane (C5H12) is a component of gasoline that burns according to the following balanced equation: C5H12(l) + 8 O2(g) → 5 CO2(g) + 6 H2O(g) Calculate ΔH°rxn for this reaction using standard enthalpies of formation. (The standard enthalpy of formation of liquid pentane is –146.8 kJ/mol.)
- Use standard enthalpies of formation to calculate ΔH°rxn for the reaction: CO(g) + H2O(g) → H2(g) + CO2(g)
Problem 87
Problem 87a
Use standard enthalpies of formation to calculate ΔH°rxn for each reaction. a. C2H4(g) + H2(g) → C2H6(g)
Problem 87c
Use standard enthalpies of formation to calculate ΔH°rxn for each reaction. c. 3 NO2(g) + H2O(l) → 2 HNO3(aq) + NO(g)
Problem 87d
Use standard enthalpies of formation to calculate ΔH°rxn for each reaction. d. Cr2O3(s) + 3 CO(g) → 2 Cr(s) + 3 CO2(g)
- Use standard enthalpies of formation to calculate ΔH° for the reaction: C(s) + H2O(g) → CO(g) + H2(g).
Problem 88
Problem 88a
Use standard enthalpies of formation to calculate ΔH°rxn for each reaction. a. 2 H2S(g) + 3 O2(g) → 2 H2O(l) + 2 SO2(g)
Problem 88b
Use standard enthalpies of formation to calculate ΔH°rxn for each reaction. b. SO2(g) + 1/2 O2(g) → SO3(g)
Problem 88d
Use standard enthalpies of formation to calculate ΔH°rxn for each reaction. d. N2O4(g) + 4 H2(g) → N2(g) + 4 H2O(g)
Problem 89
During photosynthesis, plants use energy from sunlight to form glucose (C6H12O6) and oxygen from carbon dioxide and water. Write a balanced equation for photosynthesis.
Problem 90
Ethanol (C2H5OH) can be made from the fermentation of crops and has been used as a fuel additive to gasoline. Write a balanced equation for the combustion of ethanol and calculate ΔH°rxn.
Problem 91
Top fuel dragsters and funny cars burn nitromethane as fuel according to the balanced combustion equation: 2 CH3NO2(l) + 3/2O2(g) → 2 CO2(g) + 3 H2O(l) + N2(g) ΔH°rxn = –1418 kJ The enthalpy of combustion for nitromethane is –709.2 kJ/mol. Calculate the standard enthalpy of formation (ΔH°f ) for nitromethane.
Ch.7 - Thermochemistry