Problem 89c
Consider this reaction occurring at 298 K: N2O(g) + NO2(g) ⇌ 3 NO(g) c. Can the reaction be made more spontaneous by an increase or decrease in temperature? If so, what temperature is required to make the reaction spontaneous under standard conditions?
Problem 90a
Consider this reaction occurring at 298 K: BaCO3(s) ⇌ BaO(s) + CO2(g) a. Show that the reaction is not spontaneous under standard conditions by calculating ΔG°rxn.
Problem 90b
Consider this reaction occurring at 298 K: BaCO3(s) ⇌ BaO(s) + CO2( g) b. If BaCO3 is placed in an evacuated flask, what is the partial pressure of CO2 when the reaction reaches equilibrium?
Problem 90c
Consider this reaction occurring at 298 K: BaCO3(s) ⇌ BaO(s) + CO2(g) c. Can the reaction be made more spontaneous by an increase or decrease in temperature? If so, at what temperature is the partial pressure of carbon dioxide 1.0 atm?
Problem 91a
Living organisms use energy from the metabolism of food to create an energy-rich molecule called adenosine triphosphate (ATP). The ATP acts as an energy source for a variety of reactions that the living organism must carry out to survive. ATP provides energy through its hydrolysis, which can be symbolized as follows: ATP(aq) + H2O(l) → ADP(aq) + Pi(aq) ΔGrxn ° = -30.5 kJ where ADP represents adenosine diphosphate and Pi represents an inorganic phosphate group (such as HPO42-). a. Calculate the equilibrium constant, K, for the given reaction at 298 K.
Problem 91b
Living organisms use energy from the metabolism of food to create an energy-rich molecule called adenosine triphosphate (ATP). The ATP acts as an energy source for a variety of reactions that the living organism must carry out to survive. ATP provides energy through its hydrolysis, which can be symbolized as follows: ATP(aq) + H2O(l) → ADP(aq) + Pi(aq) ΔG°rxn = -30.5 kJ where ADP represents adenosine diphosphate and Pi represents an inorganic phosphate group (such as HPO42-). b. The free energy obtained from the oxidation (reaction with oxygen) of glucose (C6H12O6) to form carbon dioxide and water can be used to re-form ATP by driving the given reaction in reverse. Calculate the standard free energy change for the oxidation of glucose and estimate the maximum number of moles of ATP that can be formed by the oxidation of one mole of glucose.
- The standard free energy change for the hydrolysis of ATP was given in Problem 91. In a particular cell, the concentrations of ATP, ADP, and Pi are 0.0031 M, 0.0014 M, and 0.0048 M, respectively. Calculate the free energy change for the hydrolysis of ATP under these conditions, assuming a temperature of 298 K.
Problem 92
Problem 93
These reactions are important in catalytic converters in automobiles. Calculate ΔG° for each at 298 K. Predict the effect of increasing temperature on the magnitude of ΔG°.
a. 2 CO(g) + 2 NO(g) → N2(g) + 2 CO2(g)
b. 5 H2(g) + 2 NO(g) → 2 NH3(g) + 2 H2O(g)
c. 2 H2(g) + 2 NO(g) → N2(g) + 2 H2O(g)
d. 2 NH3(g) + 2 O2(g) → N2O(g) + 3 H2O(g)
Problem 94
Calculate ΔG° at 298 K for these reactions and predict the effect on ΔG° of lowering the temperature.
a. NH3(g) + HBr(g) → NH4Br(s)
b. CaCO3(s) → CaO(s) + CO2(g)
c. CH4(g) + 3 Cl2(g) → CHCl3(g) + 3 HCl(g) (ΔG°f for CHCl3(g) is -70.4 kJ/mol.)
Problem 95
All the oxides of nitrogen have positive values of ΔG°f at 298 K, but only one common oxide of nitrogen has a positive ΔS°f. Identify that oxide of nitrogen without reference to thermodynamic data and explain.
Problem 96
The values of ΔG°f for the hydrogen halides become less negative with increasing atomic number. The ΔG°f of HI is slightly positive. However, the trend in ΔS°f is to become more positive with increasing atomic number. Explain.
Problem 97
Consider the reaction X2(g) → 2X(g). When a vessel initially containing 755 torr of X2 comes to equilibrium at 298 K, the equilibrium partial pressure of X is 103 torr. The same reaction is repeated with an initial partial pressure of 748 torr of X2 at 755 K; the equilibrium partial pressure of X is 532 torr. Find ΔH° for the reaction.
Problem 98
Dinitrogen tetroxide decomposes to nitrogen dioxide: N2O4(g) → 2 NO2(g) ΔH°rxn = 55.3 kJ At 298 K, a reaction vessel initially contains 0.100 atm of N2O4. When equilibrium is reached, 58% of the N2O4 has decomposed to NO2. What percentage of N2O4 decomposes at 388 K? Assume that the initial pressure of N2O4 is the same (0.100 atm).
- Is the sign of ΔSuniv for each process positive or negative? Explain for the following: b. the electrolysis of H2O(l) to H2(g) and O2(g) at 298 K c. the growth of an oak tree from a little acorn.
Problem 99
Problem 99a
Indicate and explain the sign of ΔSuniv for each process. a. 2 H2(g) + O2(g) → 2 H2O (l) at 298 K.
Problem 100
The Haber process is very important for agriculture because it converts N2(g) from the atmosphere into bound nitrogen, which can be taken up and used by plants. The Haber process reaction is N2(g) + 3 H2(g) → 2 NH3(g). The reaction is exothermic but is carried out at relatively high temperatures. Why?
Problem 101
A metal salt with the formula MCl2 crystallizes from water to form a solid with the composition MCl2 • 6 H2O. The equilibrium vapor pressure of water above this solid at 298 K is 18.3 mmHg. What is the value of ΔG for the reaction MCl2 • 6 H2O(s) ⇌ MCl2(s) + 6 H2O(g) when the pressure of water vapor is 18.3 mmHg? When the pressure of water vapor is 760 mmHg?
Problem 102
The solubility of AgCl(s) in water at 25 °C is 1.33⨉10-5 mol/L and its ΔH° of solution is 65.7 kJ/mol. What is its solubility at 50.0 °C?
Ch.18 - Free Energy and Thermodynamics