Problem 162c
The half-reactions that occur in ordinary alkaline batteries can be written as In 1999, researchers in Israel reported a new type of alkaline battery, called a 'super-iron' battery. This battery uses the same anode reaction as an ordinary alkaline battery but involves the reduction of FeO42- ion (from K2FeO4) to solid Fe(OH)3 at the cathode. (c) A super-iron battery should last longer than an ordinary alkaline battery of the same size and weight because its cathode can provide more charge per unit mass. Quan-titatively compare the number of coulombs of charge released by the reduction of 10.0 g K2FeO4 to Fe(OH)3 with the number of coulombs of charge released by the reduction 10.0 g of MnO2 to MnO(OH).
- Gold metal is extracted from its ore by treating the crushed rock with an aerated cyanide solution. The unbalanced equation for the reaction is (b) Use any of the following data at 25 °C to calculate ∆G° for this reaction at 25 °C: Kf for Au(CN)2- = 6.2 x 10^38, Ka for HCN = 4.9 x 10^-10, and standard reduction potentials are
Problem 163
- Consider the redox titration of 100.0 mL of a solution of 0.010 M Fe2+ in 1.50 M H2SO4 with a 0.010 M solution of KMnO4, yielding Fe3+ and Mn2+. The titration is carried out in an electrochemical cell equipped with a platinum electrode and a calomel reference electrode consisting of an Hg2Cl2/Hg electrode in contract with a saturated KCl solution having [Cl-] = 2.9M. Using any data in Appendixes C and D, calculate the cell potential after addition of (a) 5.0 mL, (b) 10.0mL, (c) 19.0 mL, and (d) 21.0 mL of the KMnO4 solution.
Problem 164
Problem 165
We've said that the +1 oxidation state is uncommon for indium but is the most stable state for thallium. Verify this statement by calculating E ° and ΔG ° (in kilojoules) for the disproportionation reaction
3 M+1aq2S M3+1aq2 + 2 M1s2 M = In or Tl
Is disproportionation a spontaneous reaction for In+ and/orTl+? Standard reduction potentials for the relevant halfreactions are
In3+1aq2 + 2 e- S In+1aq2 E° = -0.44 V
In+1aq2 + e- S In1s2 E° = -0.14 V
Tl3+1aq2 + 2 e- S Tl+1aq2 E° = +1.25 V
Tl+1aq2 + e- S Tl1s2 E° = -0.34 V
Ch.19 - Electrochemistry