Ch.14 - Chemical Kinetics
- A 1.50 L sample of gaseous HI having a density of 0.0101 g>cm3 is heated at 410 °C. As time passes, the HI decomposes to gaseous H2 and I2. The rate law is -Δ3HI4>Δt = k3HI42, where k = 0.031>1M ~ min2 at 410 °C. (b) What is the partial pressure of H2 after a reaction time of 8.00 h?
Problem 138
- The rate constant for the decomposition of gaseous NO2 to NO and O2 is 4.7>1M ~ s2 at 383 °C. Consider the decomposition of a sample of pure NO2 having an initial pressure of 746 mm Hg in a 5.00 L reaction vessel at 383 °C. (c) What is the mass of O2 in the vessel after a reaction time of 1.00 min?
Problem 139
Problem 140a
The rate constant for the first-order decomposition of gaseous N2O5 to NO2 and O2 is 1.7 * 10-3 s-1 at 55 °C. (a) If 2.70 g of gaseous N2O5 is introduced into an evacuated 2.00 L container maintained at a constant temperature of 55 °C, what is the total pressure in the container after a reaction time of 13.0 minutes?
Problem 140b
The rate constant for the first-order decomposition of gaseous N2O5 to NO2 and O2 is 1.7 * 10-3 s-1 at 55 °C. (b) Use the data in Appendix B to calculate the initial rate at which the reaction mixture absorbs heat (in J/s). You may assume that the heat of the reaction is independent of temperature.
- For the thermal decomposition of nitrous oxide, 2 N2O1g2S 2 N21g2 + O21g2, values of the parameters in the Arrhenius equation are A = 4.2 * 109 s-1 and Ea = 222 kJ>mol. If a stream of N2O is passed through a tube 25 mm in diameter and 20 cm long at a flow rate of 0.75 L/min at what temperature should the tube be maintained to have a partial pressure of 1.0 mm of O2 in the exit gas? Assume that the total pressure of the gas in the tube is 1.50 atm.
Problem 141
- A 0.500 L reaction vessel equipped with a movable piston is filled completely with a 3.00% aqueous solution of hydrogen peroxide. The H2O2 decomposes to water and O2 gas in a first-order reaction that has a half-life of 10.7 h. As the reaction proceeds, the gas formed pushes the piston against a constant external atmospheric pressure of 738 mm Hg. Calculate the PV work done (in joules) after a reaction time of 4.02 h. (You may assume that the density of the solution is 1.00 g/mL and that the temperature of the system is maintained at 20 °C.)
Problem 142
- At 791 K and relatively low pressures, the gas-phase decomposition of acetaldehyde (CH3CHO) is second order in acetaldehyde. CH3CHO(g) → CH4(g) + CO(g) The total pressure of a particular reaction mixture was found to vary as follows:
Problem 143
(a) Use the pressure data to determine the value of the rate constant in units of atm⁻¹ s⁻¹. (b) What is the rate constant in the usual units of M⁻¹ s⁻¹?
You may have been told not to mix bleach and ammonia. The reason is that bleach (sodium hypochlorite) reacts with ammonia to produce toxic chloramines, such as NH2Cl. For example, in basic solution: OCl-1aq2 + NH31aq2S OH-1aq2 + NH2Cl1aq2 (a) The following initial rate data for this reaction were obtained in basic solution at 25 °CProblem 160
What is the rate law for the reaction? What is the numerical value of the rate constant k, including the correct units?