Problem 61
Hydrofluoric acid, HF(aq), cannot be stored in glass bottles because compounds called silicates in the glass are attacked by the HF(aq). Sodium silicate (Na2SiO3), for example, reacts as follows: Na2SiO3(s) + 8 HF(aq) → H2SiF6(aq) + 2 NaF(aq) + 3 H2O(l) (a) How many moles of HF are needed to react with 0.300 mol of Na2SiO3? (b) How many grams of NaF form when 0.500 mol of HF reacts with excess Na2SiO3? (c) How many grams of Na2SiO3 can react with 0.800 g of HF?
Problem 62a
The reaction between potassium superoxide, KO2, and CO2, 4 KO2 + 2 CO2¡2K2CO3 + 3 O2 is used as a source of O2 and absorber of CO2 in selfcontained breathing equipment used by rescue workers. (a) How many moles of O2 are produced when 0.400 mol of KO2 reacts in this fashion?
Problem 62b
The reaction between potassium superoxide, KO2, and CO2, 4 KO2 + 2 CO2¡2K2CO3 + 3 O2 is used as a source of O2 and absorber of CO2 in selfcontained breathing equipment used by rescue workers. (b) How many grams of KO2 are needed to form 7.50 g of O2?
Problem 63b,c
Several brands of antacids use Al1OH23 to react with stomach acid, which contains primarily HCl: Al(OH)3(s) + HCl(aq) → AlCl3(aq) + H2O(l) (b) Calculate the number of grams of HCl that can react with 0.500 g of Al(OH)3. (c) Calculate the number of grams of AlCl3 and the number of grams of H2O formed when 0.500 g of Al(OH)3 reacts.
Problem 64b,c
An iron ore sample contains Fe2O3 together with other substances. Reaction of the ore with CO produces iron metal: Fe2O3(s) + CO(g) → Fe(s) + CO2(g) (b) Calculate the number of grams of CO that can react with 0.350 kg of Fe2O3. (c) Calculate the number of grams of Fe and the number of grams of CO2 formed when 0.350 kg of Fe2O3 reacts.
Problem 65b
Aluminum sulfide reacts with water to form aluminum hydroxide and hydrogen sulfide. (a) Write the balanced chemical equation for this reaction. (b) How many grams of aluminum hydroxide are obtained from 14.2 g of aluminum sulfide?
Problem 66a
Calcium hydride reacts with water to form calcium hydroxide and hydrogen gas. (a) Write a balanced chemical equation for the reaction.
Problem 67c
Automotive air bags inflate when sodium azide, NaN3, rapidly decomposes to its component elements: 2 NaN31s2¡2 Na1s2 + 3 N21g2 (c) How many grams of NaN3 are required to produce 10.0 ft3 of nitrogen gas, about the size of an automotive air bag, if the gas has a density of 1.25 g/L?
Problem 68a
The complete combustion of octane, C8H18, a component of gasoline, proceeds as follows: 2 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(g) (a) How many moles of O2 are needed to burn 1.50 mol of C8H18?
Problem 68b
The complete combustion of octane, C8H18, a component of gasoline, proceeds as follows: 2 C8H18(l) + 25 O2(g) → 16 CO2(g) + 18 H2O(g) (b) How many grams of O2 are needed to burn 10.0 g of C8H18?
Problem 68c
The complete combustion of octane, C8H18, a component of gasoline, proceeds as follows: 2 C8H18 (l) + 25 O2 (g) → 16 CO2 (g) + 18 H2O (g) (c) Octane has a density of 0.692 g/mL at 20 °C. How many grams of O2 are required to burn 15.0 gal of C8H18 (the capacity of an average fuel tank)?
Problem 70
Detonation of nitroglycerin proceeds as follows: 4 C3H5N3O91l2¡ 12 CO21g2 + 6 N21g2 + O21g2 + 10 H2O1g2 (a) If a sample containing 2.00 mL of nitroglycerin 1density = 1.592 g>mL2 is detonated, how many moles of gas are produced?
- The complete combustion of octane, C8H18, produces 5470 kJ of heat. Calculate how many grams of octane are required to produce 20,000 kJ of heat.
Problem 71
Problem 72b
The combustion of one mole of liquid octane, CH3(CH2)6CH3, produces 5470 kJ of heat. Calculate how much heat is produced if 1.000 gallon of octane is combusted.
Problem 75b
Consider the mixture of ethanol, C2H5OH, and O2 shown in the accompanying diagram. (b) Which reactant is the limiting reactant?
Problem 75c
Consider the mixture of ethanol, C2H5OH, and O2 shown in the accompanying diagram. (c) How many molecules of CO2, H2O, C2H5OH, and O2 will be present if the reaction goes to completion?
Problem 76a
Consider the mixture of propane, C3H8, and O2 shown here. (a) Write a balanced equation for the combustion reaction that occurs between propane and oxygen.
Problem 76c
Consider the mixture of propane, C3H8, and O2 shown here. (c) How many molecules of CO2, H2O, C3H8, and O2 will be present if the reaction goes to completion?
Problem 77b
Sodium hydroxide reacts with carbon dioxide as follows: 2 NaOH(s) + CO2(g) → Na2CO3(s) + H2O(l) How many moles of Na2CO3 can be produced?
Problem 77c
Sodium hydroxide reacts with carbon dioxide as follows: 2 NaOH1s2 + CO21g2¡Na2CO31s2 + H2O1l2 How many moles of the excess reactant remain after the completion of the reaction?
Problem 78a
Aluminum hydroxide reacts with sulfuric acid as follows: 2 Al1OH231s2 + 3 H2SO41aq2¡Al21SO4231aq2 + 6 H2O1l2 Which is the limiting reactant when 0.500 mol Al1OH23 and 0.500 mol H2SO4 are allowed to react?
Problem 78b
Aluminum hydroxide reacts with sulfuric acid as follows: 2 Al1OH231s2 + 3 H2SO41aq2¡Al21SO4231aq2 + 6 H2O1l2 How many moles of Al21SO423 can form under these conditions?
Problem 78c
Aluminum hydroxide reacts with sulfuric acid as follows: 2 Al1OH231s2 + 3 H2SO41aq2¡Al21SO4231aq2 + 6 H2O1l2 How many moles of the excess reactant remain after the completion of the reaction?
Problem 79
The fizz produced when an Alka-Seltzer tablet is dissolved in water is due to the reaction between sodium bicarbonate 1NaHCO32 and citric acid 1H3C6H5O72: 3 NaHCO31aq2 + H3C6H5O71aq2¡ 3 CO21g2 + 3H2O1l2 + Na3C6H5O71aq2 In a certain experiment 1.00 g of sodium bicarbonate and 1.00 g of citric acid are allowed to react. (a) Which is the limiting reactant? (b) How many grams of carbon dioxide form? (c) How many grams of the excess reactant remain after the limiting reactant is completely consumed?
Problem 80a
One of the steps in the commercial process for converting ammonia to nitric acid is the conversion of NH3 to NO: 4 NH31g2 + 5 O21g2¡4 NO1g2 + 6 H2O1g2 In a certain experiment, 2.00 g of NH3 reacts with 2.50 g of O2. (a) Which is the limiting reactant?
Problem 80c
One of the steps in the commercial process for converting ammonia to nitric acid is the conversion of NH3 to NO: 4 NH31g2 + 5 O21g2¡4 NO1g2 + 6 H2O1g2 In a certain experiment, 2.00 g of NH3 reacts with 2.50 g of O2. (c) How many grams of the excess reactant remain after the limiting reactant is completely consumed?
Problem 80d
One of the steps in the commercial process for converting ammonia to nitric acid is the conversion of NH3 to NO: 4 NH3(g) + 5 O2(g) → 4 NO(g) + 6 H2O(g) In a certain experiment, 2.00 g of NH3 reacts with 2.50 g of O2. (d) Show that your calculations in parts (b) and (c) are consistent with the law of conservation of mass.
Problem 81a
Solutions of sodium carbonate and silver nitrate react to form solid silver carbonate and a solution of sodium nitrate. A solution containing 3.50 g of sodium carbonate is mixed with one containing 5.00 g of silver nitrate. How many grams of sodium carbonate are present after the reaction is complete? How many grams of sodium nitrate are present after the reaction is complete?
Problem 81b
Solutions of sodium carbonate and silver nitrate react to form solid silver carbonate and a solution of sodium nitrate. A solution containing 3.50 g of sodium carbonate is mixed with one containing 5.00 g of silver nitrate. How many grams of silver carbonate are present after the reaction is complete?
Problem 82a
Solutions of sulfuric acid and lead(II) acetate react to form solid lead(II) sulfate and a solution of acetic acid. If 5.00 g of sulfuric acid and 5.00 g of lead(II) acetate are mixed, calculate the number of grams of sulfuric acid and grams of acetic acid present in the mixture after the reaction is complete.
Ch.3 - Chemical Reactions and Reaction Stoichiometry