Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Graph the given quadratic function. Identify the vertex, axis of symmetry, intercepts, domain, range, and intervals for which the function is increasing or decreasing. f(x)=−(x−5)2+1
A
B
C
D
Verified step by step guidance
1
Identify the standard form of the quadratic function: f(x) = a(x-h)^2 + k, where (h, k) is the vertex.
For the given function f(x) = -(x-5)^2 + 1, identify the vertex (h, k) as (5, 1).
Determine the axis of symmetry, which is the vertical line x = h. Here, it is x = 5.
Find the y-intercept by setting x = 0 in the function: f(0) = -(0-5)^2 + 1.
Determine the intervals of increase and decrease. Since the parabola opens downwards (a < 0), it decreases on (-∞, 5) and increases on (5, ∞).