Open QuestionIn Exercises 16–17, find the zeros for each polynomial function and give the multiplicity of each zero. State whether the graph crosses the x-axis, or touches the x-axis and turns around, at each zero. f(x) = -2(x - 1)(x + 2)^2(x+5)^2
Open QuestionIn Exercises 17–24, a) List all possible rational roots. b) List all possible rational roots. c) Use the quotient from part (b) to find the remaining roots and solve the equation. x^3−10x−12=0
Open QuestionUse the factor theorem and synthetic division to determine whether the second polynomial is a factor of the first. See Example 1. 2x^4+5x^3-2x^2+5x+6; x+3
Open QuestionFind a polynomial function ƒ(x) of least degree with real coefficients having zeros as given. √3, -√3, 2, 3
Open QuestionIn Exercises 25–32, find an nth-degree polynomial function with real coefficients satisfying the given conditions. If you are using a graphing utility, use it to graph the function and verify the real zeros and the given function value. n=4; i and 3i are zeros; f(-1) = 20
Open QuestionFactor ƒ(x) into linear factors given that k is a zero. See Example 2. ƒ(x)=x^4+2x^3-7x^2-20x-12; k=-2 (multiplicity 2)
Open QuestionShow that each polynomial function has a real zero as described in parts (a) and (b). In Exercises 31 and 32, also work part (c). ƒ(x)=3x^3-8x^2+x+2between -1 and 0