Open QuestionFactor ƒ(x) into linear factors given that k is a zero. See Example 2. ƒ(x)=2x^4+x^3-9x^2-13x-5; k=-1 (multiplicity 3)
Open QuestionShow that each polynomial function has a real zero as described in parts (a) and (b). In Exercises 31 and 32, also work part (c). ƒ(x)=6x^4+13x^3-11x^2-3x+5no zero greater than 1
Open QuestionIn Exercises 39–52, find all zeros of the polynomial function or solve the given polynomial equation. Use the Rational Zero Theorem, Descartes's Rule of Signs, and possibly the graph of the polynomial function shown by a graphing utility as an aid in obtaining the first zero or the first root. f(x)=x^3−4x^2−7x+10
Open QuestionIn Exercises 47–48, find an nth-degree polynomial function with real coefficients satisfying the given conditions. Verify the real zeros and the given function value. n = 3; 2 and 2 - 3i are zeros; f(1) = -10
Open QuestionFind a polynomial function ƒ(x) of degree 3 with real coefficients that satisfies the given conditions. See Example 4. Zeros of -2, 1, and 0; ƒ(-1)=-1
Open QuestionFind a polynomial function ƒ(x) of degree 3 with real coefficients that satisfies the given conditions. See Example 4.Zero of -3 having multiplicity 3; ƒ(3)=36
Open QuestionDetermine the different possibilities for the numbers of positive, negative, and nonreal complex zeros of each function. See Example 7. ƒ(x)=4x^3-x^2+2x-7
Open QuestionDetermine the different possibilities for the numbers of positive, negative, and nonreal complex zeros of each function. See Example 7. ƒ(x)=6x^4+2x^3+9x^2+x+5