Calculus
limx→∞g(x)\lim_{x\rightarrow\infty}g\left(x\right)limx→∞g(x) =12=\frac12=21
limx→−∞g(x)\lim_{x\rightarrow-\infty}g\left(x\right)limx→−∞g(x) =−12=-\frac12=−21
Horizontal asymptotes: y=2y=2y=2 and y=−2y=-2y=−2
limx→∞g(x)=2\lim_{x\rightarrow\infty}g\left(x\right)=2limx→∞g(x)=2
limx→−∞g(x)=2\lim_{x\rightarrow-\infty}g\left(x\right)=2limx→−∞g(x)=2
Horizontal asymptote: y=2y=2y=2
limx→∞g(x)\lim_{x\rightarrow\infty}g\left(x\right)limx→∞g(x) =1=1=1
limx→−∞g(x)\lim_{x\rightarrow-\infty}g\left(x\right)limx→−∞g(x) =1=1=1
Horizontal asymptote: y=−1y=-1y=−1
limx→−∞g(x)\lim_{x\rightarrow-\infty}g\left(x\right)limx→−∞g(x) =−1=-1=−1
No horizontal asymptote