Step 3: Rewrite the integral in terms of \( u \). Substituting \( u = 1 + \sin\theta \) and \( du = \cos\theta \, d\theta \), the integral becomes \( \int \sin\theta \, u^{84} \, \cos\theta \, d\theta \). Note that \( \sin\theta = u - 1 \), so the integral becomes \( \int (u - 1) u^{84} \, du \).