Join thousands of students who trust us to help them ace their exams!Watch the first video
Multiple Choice
Evaluate the definite integral.
A
1.414
B
0.414
C
1
D
0.707
Verified step by step guidance
1
Rewrite the integral in a more convenient form: \( \int_0^1 \frac{t}{\sqrt{t^2+1}} \, dt \). Notice that the numerator \( t \) is the derivative of the expression inside the square root, \( t^2 + 1 \). This suggests a substitution method.
Let \( u = t^2 + 1 \). Then, \( du = 2t \, dt \), or equivalently, \( \frac{1}{2} du = t \, dt \). Update the limits of integration: when \( t = 0 \), \( u = 1 \); and when \( t = 1 \), \( u = 2 \).
Substitute \( u \) and \( du \) into the integral: \( \int_0^1 \frac{t}{\sqrt{t^2+1}} \, dt = \int_1^2 \frac{1}{\sqrt{u}} \cdot \frac{1}{2} \, du \).
Simplify the integral: \( \int_1^2 \frac{1}{\sqrt{u}} \cdot \frac{1}{2} \, du = \frac{1}{2} \int_1^2 u^{-1/2} \, du \).
Evaluate the integral: Use the power rule for integration, \( \int u^n \, du = \frac{u^{n+1}}{n+1} + C \), where \( n \neq -1 \). Apply this to \( u^{-1/2} \), and then substitute the limits of integration to find the result.