Textbook QuestionCalculator limits Use a calculator to approximate the following limits.lim x🠂0 e^3x-1 / x
Textbook QuestionThe speed of sound (in m/s) in dry air is approximated the function v(T) = 331 + 0.6T, where T is the air temperature (in degrees Celsius). Evaluate v' (T) and interpret its meaning.
Textbook QuestionThe right-sided and left-sided derivatives of a function at a point aa are given by f+′(a)=limh→0+f(a+h)−f(a)hf_{+}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{+}}{\frac{f(a+h)-f(a)}{h}}} and f−′(a)=limh→0−f(a+h)−f(a)hf_{-}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{-}}{\frac{f(a+h)-f(a)}{h}}}, respectively, provided these limits exist. The derivative f′(a)f^{\prime}\left(a\right) exists if and only if f+′(a)=f−′(a)f_{+}^{\prime}\left(a\right)=f_{-}^{\prime}\left(a\right).Compute f+′(a)f_{+}^{\prime}\left(a\right) and f−′(a)f_{-}^{\prime}\left(a\right) at the given point aa.f(x)=∣x−2∣f\left(x\right)=\left|x-2\right|; a=2a=2
Textbook QuestionThe right-sided and left-sided derivatives of a function at a point aaa are given by f+′(a)=limh→0+f(a+h)−f(a)hf_{+}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{+}}{\frac{f(a+h)-f(a)}{h}}} and f−′(a)=limh→0−f(a+h)−f(a)hf_{-}^{\prime}\left(a\right)={\displaystyle\lim_{h\to0^{-}}{\frac{f(a+h)-f(a)}{h}}}, respectively, provided these limits exist. The derivative f′(a)f^{\prime}\left(a\right)f′(a) exists if and only if f+′(a)=f−′(a)f_{+}^{\prime}\left(a\right)=f_{-}^{\prime}\left(a\right)f+′(a)=f−′(a).Compute f+′(a)f_{+}^{\prime}\left(a\right)f+′(a) and f−′(a)f_{-}^{\prime}\left(a\right)f−′(a) at the given point aaa.f(x)={4−x2 if x≤12x+1 if x>1f(x)=\begin{cases}4-x^2~\text{if}~x\leq{1}\\2x+1~\text{if}~x\gt{1}\end{cases}; a=1a=1
Textbook QuestionGraphsMatch the functions graphed in Exercises 27–30 with the derivatives graphed in the accompanying figures (a)–(d)." style="" width="350">" style="" width="200">