Here are the essential concepts you must grasp in order to answer the question correctly.
Domain of a Function
The domain of a function refers to the set of all possible input values (x-values) for which the function is defined. For trigonometric functions like sine and cosine, the domain is typically all real numbers, as these functions can take any real number as input. However, when combined in an expression, the overall domain may be influenced by other factors, such as restrictions from the context of the problem.
Recommended video:
Finding the Domain and Range of a Graph
Range of a Function
The range of a function is the set of all possible output values (y-values) that the function can produce. For the function given, 𝔶 = 3 cos x + 4 sin x, the range can be determined by analyzing the maximum and minimum values of the expression. Using trigonometric identities, one can express this function in a form that reveals its amplitude and thus its range.
Recommended video:
Finding the Domain and Range of a Graph
Trigonometric Identities
Trigonometric identities are equations that involve trigonometric functions and are true for all values of the variables involved. A common identity used in problems involving sine and cosine is the Pythagorean identity, which states that sin²(x) + cos²(x) = 1. In this case, a relevant identity can help simplify the expression 3 cos x + 4 sin x into a single sinusoidal function, making it easier to determine the range.
Recommended video:
Verifying Trig Equations as Identities