Here are the essential concepts you must grasp in order to answer the question correctly.
Limits
Limits are fundamental in calculus, representing the value that a function approaches as the input approaches a certain point. They are essential for understanding continuity, derivatives, and integrals. In this context, evaluating the limit as x approaches infinity helps determine the behavior of the function at extreme values.
Recommended video:
L'Hôpital's Rule
L'Hôpital's Rule is a method for evaluating limits that result in indeterminate forms, such as 0/0 or ∞/∞. It states that if these forms occur, the limit of the ratio of two functions can be found by taking the derivative of the numerator and the derivative of the denominator. This rule simplifies the process of finding limits in complex expressions.
Recommended video:
Exponential Functions
Exponential functions, such as e^x, are functions where a constant base is raised to a variable exponent. They grow rapidly as x increases, which is crucial when evaluating limits at infinity. Understanding their growth behavior helps in determining the dominant terms in expressions, especially when comparing them to polynomial or constant terms.
Recommended video: