Here are the essential concepts you must grasp in order to answer the question correctly.
Limits
Limits are fundamental concepts in calculus that describe the behavior of a function as its input approaches a certain value. They help in understanding the function's behavior near points of interest, including points of discontinuity or infinity. Evaluating limits is crucial for defining derivatives and integrals, which are core components of calculus.
Recommended video:
L'Hôpital's Rule
L'Hôpital's Rule is a method for evaluating limits that result in indeterminate forms, such as 0/0 or ∞/∞. It states that if the limit of f(x)/g(x) leads to an indeterminate form, the limit can be found by taking the derivative of the numerator and the derivative of the denominator separately. This rule simplifies the process of finding limits in complex functions.
Recommended video:
Tangent Function
The tangent function, denoted as tan(x), is a periodic function defined as the ratio of the sine and cosine functions: tan(x) = sin(x)/cos(x). It has vertical asymptotes where the cosine function is zero, which occurs at odd multiples of π/2. Understanding the behavior of the tangent function near these points is essential for evaluating limits involving tan(x).
Recommended video: