Business Calculus
Assess the validity of the following statement and provide a reasoning. Assume ddd and PPP are finite numbers.
If limz→dk(z)=P{\displaystyle\lim_{z\to d}k\left(z\right)=P}z→dlimk(z)=P, then k(d)=Pk\left(d\right)=Pk(d)=P.
The radius of a right cylinder having a height of 15 cm15\text{ cm}15 cm and a surface area of U cm2U\text{ cm}^2U cm2 is given as r(U)=15(225+5Uπ−15)r\left(U\right)=\frac15\left(\sqrt{225+\frac{5U}{\pi}}-15\right)r(U)=51(225+π5U−15). Calculate limU→0+r(U){\displaystyle\lim_{U\to0^{+}}}r\left(U\right)U→0+limr(U) and provide an interpretation.
Evaluate the limit.
limx→41x−4(1x+5−13)\displaystyle \lim_{x \to 4}{\frac{1}{x-4}\left(\frac{1}{\sqrt{x+5}}-\frac{1}{3}\right)}x→4limx−41(x+51−31)
Evaluate the limit as x→±∞x\to\pm\inftyx→±∞ and identify any horizontal asymptotes for the function f(x)=x4−25x2−25f\left(x\right)=\frac{x^4-25}{x^2-25}f(x)=x2−25x4−25.
Evaluate the limit of the function f(x)=(5x−9x)4f\left(x\right)=\left(\frac{5x-9}{x}\right)^4 as x→∞x\to\infty.
Use the following theorem to evaluate limx→0sin39x9x\displaystyle \lim_{x \to 0}{\frac{\sin{39x}}{9x}}:
limx→0sinxx=1\displaystyle \lim_{x \to 0}{\frac{\sin{x}}{x}}=1
Find the value of limx→0 f(x){\displaystyle\lim_{x\to0}}\text{ }f\left(x\right) given that limx→3(2x limx→0f(x))=−12{\displaystyle\lim_{x\to3}}\left(2x\text{ }{{\displaystyle\lim_{x\to0}f\left(x\right)}}\right)=-12.